Abstract: Let M be a compact Riemannian manifold. It was proved by Weyl that number of Laplacian eigenvalues less than T, is asymptotic to $C(M)T^{\text{dim}(M)/2}$, where $C(M)$ is the product of the volume of M, volume of the unit ball and $(2\pi)^{-\text{dim}(M)}$. Let Γ be an arithmetic subgroup of $SL_2(\mathbb{Z})$ and let \mathbb{H}^2 be an upper-half plane. When $M = \Gamma \backslash \mathbb{H}^2$, Weyl’s asymptotic holds true for the discrete spectrum of Laplacian. It was proved by Selberg, who used his celebrated trace formula.

Let G be a semisimple algebraic group of Adjoint and split type over \mathbb{Q}. Let $G(\mathbb{R})$ be the set of \mathbb{R}-points of G. For simplicity of this exposition let us assume that $\Gamma \subset G(\mathbb{R})$ be an torsion free arithmetic subgroup. Let K_∞ be the maximal compact subgroup. Let $L^2(\Gamma \backslash G(\mathbb{R}))$ be space of square integrable Γ invariant functions on $G(\mathbb{R})$. Let $L^2_{\text{cusp}}(\Gamma \backslash G(\mathbb{R}))$ be the cuspidal subspace. Let $M = \Gamma \backslash G(\mathbb{R})/K_\infty$ be a locally symmetric space. Suppose $d = \text{dim}(\Gamma \backslash G/K_\infty)$. Then it was proved by Lindenstrauss and Venkatesh, that number of spherical, i.e. bi-K_∞ invariant cuspidal Laplacian eigenfunctions, whose eigenvalues are less than T is asymptotic to $C(M)T^{\text{dim}(M)/2}$, where $C(M)$ is the same constant as above.

We are going to prove the same Weyl’s asymptotic estimates for K_∞-finite cusp forms for the above space.