Abstract: Let Ω be a relatively compact domain with C^2 boundary in a Hermitian manifold M. The Diederich-Fornaess index is the supremum of all exponents $0 < \eta < 1$ such that $-(-\rho)^\eta$ is strictly plurisubharmonic on Ω for some C^2 defining function ρ. This index is known to have many applications to the study of regularity properties of the Bergman Projection. It is believed to be a biholomorphic invariant, so it should not depend on the geometry of the ambient manifold. However, there are some surprising connections between the Diederich-Fornaess Index and the existence of metrics with certain properties, which we will discuss in this talk.