Abstract: Let \(f \in K(z) \) be a rational function of degree \(d \geq 2 \) defined over a field \(K \) (usually \(Q \)), and let \(x_0 \in K \). The backward orbit of \(x_0 \), which is the union of the iterated preimages \(f^{-n}(x_0) \), has the natural structure of a \(d \)-ary rooted tree. Thus, the Galois groups of the fields generated by roots of the equations \(f^n(z) = x_0 \) are known as arboreal Galois groups. In 2013, Pink observed that when \(d = 2 \) and the two critical points \(c_1, c_2 \) of \(f \) collide, meaning that \(f^m(c_1) = f^m(c_2) \) for some \(m \geq 1 \), then the arboreal Galois groups are strictly smaller than the full automorphism group of the tree. We study these arboreal Galois groups when \(K \) is a number field and \(f \) is either a quadratic rational function (as in Pink’s setting over function fields) or a cubic polynomial with colliding critical points. We describe the maximum possible Galois groups in these cases, and we present sufficient conditions for these maximum groups to be attained.