Abstract: Many parabolic PDEs modeling fluid, flame, and plasma dynamics have quadratic, energy-conserving nonlinear terms. If the linear term in such a PDE is coercive, then standard energy estimates show that the magnitude of the solution must remain bounded for all time. However, for many models the linear term is not coercive and it is not immediately clear that solutions remain bounded. We consider a general class of such parabolic PDE models, and prove solutions remain bounded. We also discuss examples.