31 Jan
2017
31 Jan
'17
8:58 p.m.
This is an announcement for the paper “Universal function for a weighted space $L^1_u[0,1]$” by Artsrun Sargsyan<https://arxiv.org/find/math/1/au:+Sargsyan_A/0/1/0/all/0/1>, Martin Grigoryan<https://arxiv.org/find/math/1/au:+Grigoryan_M/0/1/0/all/0/1>. Abstract: It is shown that there exist such a function g from $L^1[0,1]$ and a weight function $0<u(x)<=1$ that g is universal for the weighted space $L^1_u[0,1]$ with respect to signs of its Fourier-Walsh coefficients. The paper may be downloaded from the archive by web browser from URL https://arxiv.org/abs/1701.05776