This is an announcement for the paper "Approximating with Gaussians" by Craig Calcaterra and Axel Boldt.
Abstract: Linear combinations of translations of a single Gaussian, e^{-x^2}, are shown to be dense in L^2(R). Two algorithms for determining the coefficients for the approximations are given, using orthogonal Hermite functions and least squares. Taking the Fourier transform of this result shows low-frequency trigonometric series are dense in L^2 with Gaussian weight function.
Archive classification: math.CA math.FA
Mathematics Subject Classification: 41A30; 42A32; 42C10
Remarks: 16 pages, 23 figures
The source file(s), AppGaussArXiv3.tex: 61111 bytes I100.png: 14299 bytes I200.png: 7466 bytes I210.png: 8594 bytes I220.png: 8450 bytes I230.png: 9254 bytes I240.png: 8799 bytes I250.png: 8967 bytes I300.png: 8446 bytes I310.png: 10845 bytes I311.png: 10945 bytes I320.png: 10846 bytes I330.png: 11696 bytes I340.png: 11710 bytes I350.png: 11061 bytes I400.png: 10444 bytes I410.png: 10145 bytes I420.png: 9810 bytes I500.png: 10246 bytes I510.png: 10478 bytes I520.png: 11634 bytes I530.png: 11233 bytes I600.png: 10241 bytes I610.png: 11497 bytes, is(are) stored in gzipped form as 0805.3795.tar.gz with size 202kb. The corresponding postcript file has gzipped size 279kb.
Submitted from: axel.boldt@metrostate.edu
The paper may be downloaded from the archive by web browser from URL
http://front.math.ucdavis.edu/0805.3795
or
http://arXiv.org/abs/0805.3795
or by email in unzipped form by transmitting an empty message with subject line
uget 0805.3795
or in gzipped form by using subject line
get 0805.3795
to: math@arXiv.org.