Abstract of a paper by D. Azagra, R. Fry, and L. Keener
This is an announcement for the paper "Real analytic approximations which almost preserve Lipschitz constants of functions defined on the Hilbert space" by D. Azagra, R. Fry, and L. Keener. Abstract: Let $X$ be a separable real Hilbert space. We show that for every Lipschitz function $f:X\rightarrow\mathbb{R}$, and for every $\varepsilon>0$, there exists a Lipschitz, real analytic function $g:X\rightarrow\mathbb{R}$ such that $|f(x)-g(x)|\leq \varepsilon$ and $\textrm{Lip}(g)\leq \textrm{Lip}(f)+\varepsilon$. Archive classification: math.FA Mathematics Subject Classification: 46B20 Remarks: 7 pages Submitted from: dazagra@gmail.com The paper may be downloaded from the archive by web browser from URL http://front.math.ucdavis.edu/1012.4339 or http://arXiv.org/abs/1012.4339
participants (1)
-
alspach@math.okstate.edu