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Abstract

We show that any smooth, closed, oriented, connected 4–manifold can
be trisected into three copies of ♮k(S1 × B3), intersecting pairwise in 3–
dimensional handlebodies, with triple intersection a closed 2–dimensional
surface. Such a trisection is unique up to a natural stabilization operation.
This is analogous to the existence, and uniqueness up to stabilization, of
Heegaard splittings of 3–manifolds. A trisection of a 4–manifold X arises
from a Morse 2–function G : X → B2 and the obvious trisection of B2 ,
in much the same way that a Heegaard splitting of a 3–manifold Y arises
from a Morse function g : Y → B1 and the obvious bisection of B1 .
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1 Introduction

Consider first the 3–dimensional case of an oriented, connected, closed 3–
manifold Y 3 . From a Morse function f : Y → [0, 3] with only one critical
point of index zero and one of index three, and all critical points of index i
mapping to i, we see that f−1([0, 3/2]) and f−1([3/2, 3]) are solid handlebod-
ies, ♮g(S1 ×B2) .

For uniqueness, we use Cerf theory [3] to get a homotopy ft : Y → [0, 3]
between f0 and f1 (each giving Heegaard splittings) where this homotopy in-
troduces no new critical points of index zero or three. There are births and
deaths of canceling pairs of index one and two critical points, but these sta-
bilize the Heegaard splittings by connected summing with the standard genus
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one splitting of S3 . The homotopy ft can be chosen to keep the index one
critical values below 3/2 and the index two above. Then handle slides between
1–handles, or 2–handles, take one Heegaard splitting to the other. (This is a
now well known Cerf theoretic proof of the Reidemeister-Singer theorem [9][11]
which was originally proved combinatorially e.g. [10].)

Recall that a Heegaard diagram for a Heegaard splitting is a triple (Fg, α, β)
where Fg is the Heegaard surface, and each of α and β is a g–tuple of simple
closed curves in Fg which bounds a basis of compressing disks in each of the
two handlebodies. Thus every 3–manifold is described by a Heegaard diagram,
and two Heegaard diagrams describe diffeomorphic 3–manifolds if and only if
they are related by stabilization, handle slides, and diffeomorphisms of Fg .

We now set up an analogous story in dimension four: Let Zk = ♮k(S1 × B3)
with Yk = ∂Zk = ♯k(S1 × S2). Given an integer g ≥ k , let Yk = Y +

k,g ∪ Y
−

k,g

be the standard genus g Heegaard splitting of Yk obtained by stabilizing the
standard genus k Heegaard splitting g − k times.

Definition 1 Given integers 0 ≤ k ≤ g , a (g, k)–trisection (see Figure 1) of a
closed, connected, oriented 4–manifold X is a decomposition of X into three
submanifolds X = X1 ∪X2 ∪X3 satisfying the following properties:

(1) For each i = 1, 2, 3, there is a diffeomorphism φi : Xi → Zk .

(2) For each i = 1, 2, 3, taking indices mod 3, φi(Xi ∩ Xi+1) = Y −

k,g and

φi(Xi ∩Xi−1) = Y +
k,g .

Remark 2 Note that the triple intersection X1∩X2∩X3 is a surface of genus
g and that χ(X) = 2 + g − 3k . Thus k is determined by X and g , and for
this reason we will often refer to a (g, k)–trisection of X simply as a genus g
trisection of X . Also note that, for a fixed X , different trisections thus have
the same genera mod 3.

Given a (g, k)–trisection X = X1 ∪X2 ∪X3 , consider the handlebodies Hij =
Xi ∩Xj and the central genus g surface Fg = X1 ∩X2 ∩X3 = ∂Hij . A choice
of a system of g compressing disks on Fg for each of the three handlebodies
gives three collections of g curves: α = (α1, . . . , αg), β = (β1, . . . , βg) and
γ = (γ1, . . . , γg), such that compressing along α gives H12 , compressing along
β gives H23 and compressing along γ gives H31 . Furthermore, each pair (α, β),
(β, γ) and (γ, α) is a Heegaard diagram for ♯k(S1 × S2).

Definition 3 A (g, k)–trisection diagram is a 4–tuple (Fg, α, β, γ) such that
each triple (Fg, α, β), (Fg, β, γ) and (Fg, γ, α) is a genus g Heegaard diagram for
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X1

X2

X3

Figure 1: How the pieces of a trisection fit together.

♯k(S1 × S2). The 4–manifold determined in the obvious way by this trisection
diagram will be denoted X(Fg, α, β, γ).

Theorem 4 (Existence) Every closed, connected, oriented 4–manifold X has
a (g, k)–trisection for some 0 ≤ k ≤ g . Furthermore, g and k are such that
X has a handlebody decomposition with 1 0–handle, k 1–handles, g − k 2–
handles, k 3–handles and 1 4–handle.

Remark 5 There are two trivial consequences of the handle decomposition
mentioned in the theorem which are worth noting:

(1) If k = 0, i.e. X1 , X2 and X3 are each 4–balls, then X has no 1– or
3–handles, and is thus simply-connected.

(2) If g = k , then X has no 2–handles, so X ∼= ♯kS1 × S3 .

The following is immediate:

Corollary 6 Every closed 4–manifold is diffeomorphic to X(Fg , α, β, γ) for
some trisection diagram (Fg, α, β, γ).

Remark 7 Readers familiar with the Heegaard triples used [8] to define the
Heegaard-Floer 4–manifold invariants will see that a trisection diagram is a
special type of Heegaard triple and may suspect that this corollary follows
fairly quickly from the Heegaard triple techniques in [8]. In all fairness this is
probably true; we will present two proofs of Theorem 4, one of which tells the
story of how we discovered the result using Morse 2–functions, while the other
is more in the spirit of [8], directly using ordinary handle decompositions. In
some sense, then, our existence result can be thought of as a particularly nice
packaging of the topological setup for [8].
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X1

X2

X3

H31

H12

H23

Figure 2: Stabilizing a trisection in dimension 3.

Exactly as with Heegaard splittings in dimension 3, our uniqueness result for
trisections of 4–manifolds is uniqueness up to a stabilization operation, which
we now define. The idea is illustrated in Figure 2, in dimension 3.

Definition 8 Stabilization Given a 4–manifold X with a trisection
(X1,X2,X3), we construct a new trisection (X ′

1,X
′

2,X
′

3), as follows: For
each i, j ∈ {1, 2, 3}, let Hij be the handlebody Xi ∩ Xj , with boundary
F = X1 ∩ X2 ∩ X3 . Let aij be a properly embedded boundary parallel arc
in each Hij , such that the end points of a12 , a23 and a31 are disjoint in F .
Let Nij be a closed 4–dimensional regular neighborhood of aij in X (thus
diffeomorphic to B4), with N12 , N23 and N31 disjoint. Then we define:

• X ′

1 = (X1 ∪N23) \ (N̊31 ∪ N̊12)

• X ′

2 = (X2 ∪N31) \ (N̊12 ∪ N̊23)

• X ′

3 = (X3 ∪N12) \ (N̊23 ∪ N̊31)

The operation of replacing (X1,X2,X3) with (X ′

1,X
′

2,X
′

3) is called stabiliza-

tion.

Since any two boundary parallel arcs in a handlebody are isotopic, it is clear
that this operation does not depend on the choice of arcs or neighborhoods.

In terms of trisection diagrams we have:
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Figure 3: Stabilizing a trisection diagram means connected summing with this
diagram. By itself, this describes the simplest nontrivial trisection of S4 , of
genus 3. The red curves are the α curves, the blues are the β ’s and the greens
are the γ ’s.

Definition 9 Given a trisection diagram (Fg, α, β, γ), the trisection diagram
(F ′

g′ = Fg+3, α
′, β′, γ′) obtained by connected summing (Fg, α, β, γ) with the

diagram in Figure 3 is called the stabilization of (Fg, α, β, γ).

We prove the following fact at the beginning of Section 5:

Lemma 10 If (X1,X2,X3) is a trisection of X4 , with genus g and dia-
gram (Fg, α, β, γ

′), and (X ′

1,X
′

2,X
′

3) is a stabilization of (X1,X2,X3), then
(X ′

1,X
′

2,X
′

3) is also a trisection of X , with genus g′ = g + 3 and diagram
(Fg′ , α

′, β′, γ′), the stabilization of (Fg, α, β, γ).

The reader may find Figure 2 useful in proving this lemma before reading our
proof.

Theorem 11 (Uniqueness) Given two trisections of X , (X1,X2,X3) and
(X ′

1,X
′

2,X
′

3), then after stabilizing each trisection some number of times, there
is a diffeomorphism h : X → X isotopic to the identity with the property that
h(Xi) = X ′

i for each i. In particular, h(Xi ∩ Xj) = X ′

i ∩ X ′

j, for i 6= j in
{1, 2, 3}, and h(X1 ∩X2 ∩X3) = h(X ′

1 ∩X
′

2 ∩X
′

3).

Corollary 12 Given trisection diagrams (Fg, α, β, γ) and (Fg′ , α
′, β′, γ′), the

corresponding 4–manifolds X(Fg, α, β, γ) and X(Fg′ , α
′, β′, γ′) are diffeomor-

phic if and only if (Fg, α, β, γ) and (Fg′ , α
′, β′, γ′) are related by stabilization,

handle slides, and diffeomorphism. “Handle slides” are slides of α’s over α’s,
β ’s over β ’s and γ ’s over γ ’s.

Proof Any two handle decompositions of a fixed genus g handlebody, each
with one 0–handle and g 1–handles, are related by handle slides; this is proved
in [5].
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2 Discussion and examples

We begin with a few explicit examples of trisections and corresponding trisection
diagrams.

• S4 ⊂ C × R
3 can be explicitly divided into three pieces Xj =

{(reiθ, x3, x4, x5) | 2πj/3 ≤ θ ≤ 2π(j + 1)/3}, giving a genus 0 trisec-
tion of S4 . The diagram is S2 with no curves.

• Stabilizing the genus 0 trisection of S4 gives a genus 3 trisection, with
trisection diagram shown in Figure 3. Since it is not known if the mapping
class group of S4 is trivial, we cannot say that the diagram determines
the trisection up to isotopy, but the original description of stabilization
of trisections (as opposed to stabilization of trisection diagrams) does
determine this trisection up to isotopy, and thus we call this the standard
genus 3 trisection of S4 .

• There is an obvious connected sum operation on trisected 4–manifolds,
obtained by removing standardly trisected balls from each manifold and
gluing along the boundary spheres so as to match the trisections. Stabi-
lization can then also be defined as performing a connected sum with S4

with its standard genus 3 trisection.

• The standard toric picture of CP 2 as a right triangle gives a natural
trisection into three pieces X1,X2,X3 as the inverse images under the
moment map of the three pieces of the right triangle shown in Figure 4.
These pieces are diffeomorphic to B4 but they intersect along solid tori
all meeting along a central fiber diffeomorphic to T 2 , so that this is a
genus 1 trisection of CP 2 . The trisection diagram shows a (1, 0)–, a
(0, 1)– and a (1, 1)– curve; this is because the normals to the edges of
the moment polytope tell us the direction in the torus which collapses
along that edge. Alternatively, this trisection can be seen simply as the
0–handle, 2–handle and 4–handle in the standard handle decomposition
of CP 2 , and the +1 framing on the 2–handle can be seen in the (1, 1)–
curve.

• Reversing the orientation of the central surface in a trisection dia-
gram reverses the orientation of the 4–manifold; i.e. X(Fg , α, β, γ) =

−X(−Fg, α, β, γ). Thus CP 2 has a genus 1 trisection, with trisection
diagram given by a (1, 0)–, (0, 1)– and (1,−1)–curve.

• Looking at the standard toric picture of S2 × S2 as a square also leads
to a natural trisection of S2 × S2 as follows: We divide the square into
four regions labelled X1 , X2a , X2b and X3 as indicated in Figure 5, and
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X1

X2 X3 α

β
γ

Figure 4: Trisection of CP 2 .

X1

X2a

X2b
X3

Figure 5: Trisection of S2 × S2 .

label the inverse images of these regions in S2 ×S2 with the same labels.
Each of X1 , X2a , X2b and X3 is a 4–ball, and in fact they give the
standard handle decomposition of S2×S2 , with X1 being the 0–handle,
X2a and X2b being the 2–handles and X3 being the 4–handle. Note
that X1 ∩ X3 is T 2 × [0, 1], with T 2 × {0} being X1 ∩ X3 ∩ X2a and
T 2 × {1} being X1 ∩X3 ∩X2b . Let p be a point in T 2 and let a be the
arc {p} × [0, 1] ⊂ X1 ∩X3 . Remove a tubular neighborhood of this arc
from X1 and X3 and add it as a tube joining X2a to X2b . The union of
X2a and X2b with this tube is the X2 of our trisection, and the new X1

and X3 are the results of removing the tube from the original X1 and
X3 . A little thought shows that this is a trisection with k = 0 (each piece
is a 4–ball) and g = 2. (Thanks to Bob Edwards for giving us the initial
picture that led to this description.)

• It may not be entirely obvious how to draw the trisection diagram for the
above trisection of S2 × S2 . However, it is not hard to draw a genus 2
trisection diagram from scratch that does give S2 × S2 . In Figure 6 we
show this diagram, as well as a diagram for S2×̃S2 and a diagram for S1×
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S3 . We leave it to the reader to see how to relate these diagrams to the
standard handle diagrams for these 4–manifolds. It is also an illuminating
exercise, knowing that S2×̃S2 ∼= CP 2♯CP 2 , to verify Corollary 12 in this
case. The earlier discussion of connected sums and of ±CP 2 gives a
trisection diagram for CP 2♯CP 2 and one checks that this is equivalent to
that in Figure 6 for S2×̃S2 via handle slides and diffeomorphism of Fg .
(It turns out that in this case we do not need stabilization.)

S2
× S2 S2

×̃S2 S1
× S3

Figure 6: Various genus 2 trisection diagrams.

Now we briefly discuss trisection diagrams more generally. Given a trisection
diagram (Fg, α, β, γ), the 4–manifold X(Fg, α, β, γ) is constructed by attaching
4–dimensional 2–handles to Fg×D

2 along α×{1}, β×{e2πi/3} and γ×{e4πi/3},
with framings coming from Fg × {p}, and the remainder of X is 3– and 4–
handles. Recall that there is a unique way, up to diffeomorphism, to attach the
3– and 4–handles [7].

Since each of (Fg, α, β), (Fg, β, γ) and (Fg, γ, α) is a Heegaard diagram for
♯k(S1 × S2), each can, after a sequence of handle slides, be made to look like
the standard genus g Heegaard diagram of ♯k(S1 × S2). However, there is no
reason to expect that we can simultaneously arrange for all three pairs of sets
of curves to be standard.

Figure 7 illustrates a general trisection diagram (except that only one γ curve
is shown) where we have made the (Fg, α, β) standard, where α is red and β
is blue; the reds and blues give the standard genus g Heegaard diagram for
♯k(S1 × S2). The important point is that most of the information about the
4–manifold X is then carried by the γ curves (one of which is drawn here in
green). These green curves can be drawn anywhere with the proviso that some
sequence of handle slides of the greens amongst the greens and the reds amongst
reds, followed by a diffeomorphism of Fg , can make the reds and greens look
like the reds and blues. The same proviso holds for the greens and blues, but
a different sequence of handle slides and a different diffeomorphism may be
required.

In fact, if a trisection diagram is drawn so that α’s and β ’s are standard as in
Figure 7, then a framed link diagram for X(Fg, α, β, γ) is obtained by erasing

8



k g − k

α1 β1

γ1

αk+1

βk+1

Figure 7: A general trisection diagram; only one γ curve is drawn, although
there should be g of them.

the last (g − k) α’s and β ’s (which appear as meridian–longitude pairs) and
then replacing each of the first k parallel pairs of α’s and β ’s by a parallel
dotted circle (1–handle) pushed slightly out of Fg . The γ ’s remain as the
attaching maps for 2–handles, and their framings come from the surface Fg .

An extended example: 3–manifold bundles over S1 . (Thanks to Stefano
Vidussi for asking interesting questions that led to this example.) Suppose X4

fibers over S1 , M →֒ X → S1 , with fiber a closed, connected, oriented 3–
manifold M3 , and monodromy µ :M →M .

A trisection of X is not immediately obvious, just as a bisection (Heegaard
splitting) is not immediate when a 3–manifold fibers over a circle: Fg →֒M →
S1 .

In the latter case, one takes two fibers over distinct points of S1 , separating
M into two copies of I × F . Choose a Morse function on F with one critical
point of index 2 and thus one 2–handle H . Remove I×H from one I×F and
add it to the other copy of I ×F . This turns the first copy into a handle body
with 2g 1–handles, and adds a 1–handle to the second copy. Again let H be
the 2–handle of the second copy (disjoint from the first H ), and remove I ×H
from the second copy of I × F and add it to the first copy. Now both copies
are handle bodies with 2g + 1 1–handles and we have the desired Heegaard
spitting.

In the 4–dimensional case, X4 = S1×µM , pick a Morse function τ0 :M → [0, 3]
with only one critical point x̂ of index 3 and only one x̄ of index 0 (τ0 could
give a minimal genus Heegaard splitting if desired).

Then τ0µ is another Morse function on M with the same kind of critical points,
and µ can be isotoped so as to fix the maximum x̂ and the minimum x̄. Then
there is a homotopy τt :M → [0, 3], t ∈ [0, 1], such that

9



X1 X2 X3 X1

X3 X1 X2

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 0)

(1, 3)

Fg

Hg = ♮gS1
× B2

I
×
Fg

Figure 8: Fibering over S1 .

(1) τ1 = τ0µ,

(2) τt = τ0 = τ0µ on x̂ and x̄ and there are no other definite critical points
of τt ,

(3) τt is a Morse function for all but a finite number of values of t at which
τt has a birth or a death of a cancelling pair of indefinite critical points.

Since S1 = [0, 1]/0 ∼ 1, property (1) allows us to define

τ : X4 = ([0, 1] ×M)/(1, x) ∼ (0, µ(x)) → S1 × [0, 3]

by setting τ(t, x) = (t, τt(x)). To check, note that τ(1, x) = (1, τ1(x)) =
(0, τ0(µ(x))) = τ(0, µ(x)).

Thus we have a smoothly varying family of Morse functions on the fibers of
X , except for the births and deaths. There are an equal number of births and
deaths because τ0 and τ0µ have the same number of critical points. Then we
can make all the births happen earlier at t = 0 and the deaths later at t = 1,
and furthermore by an isotopy of µ, the births and deaths can be paired off
and happen at the same points of M . In that case the pairs can be merged
and then τ is a family of Morse functions of the fibers of X with only one fixed
maximum and minimum and g critical points of indices 1 and 2. Furthermore,
it is straightforward to arrange that all critical points of index 1 (resp 2) take
values in a small neighborhood of 1 (resp. 2) for each t ∈ S1 .

Now draw a hexagonal-like grid on [0, 1] × [0, 3] as in Figure 8 and label the
boxes with Xi, i = 1, 2, 3. Recall that the left and right ends are identified so
as to have S1 × [0, 3].

The trisection of X into X1∪X2∪X3 is to be made by tube-connect summing
the pre images under τ of the Xi ’s in Figure 8. Over each vertical line segment
in Figure 8 is Hg which is defined to be a 3–dimensional handle body with
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♮gS1
× B3

X2 X3

X3 ♮gS1
× B3 X2

1–h
1–h

Figure 9: Connect the regions with 1–handles; here the 1–handles connecting
the X1 ’s are highlighted.

X1 X2 X3 X1

X3 X1 X2

1–h
1–h 1–h

1–h

Hg

Hg

H2g

H2g

Figure 10: Understanding the pairwise intersections when fibering over S1 .

g 1–handles, so over the interior vertices lie surfaces Fg . Over the diagonally
sloped line segments lie 3–manifolds I × Fg .

Let H be the 2–handle in Fg and define a 4–dimensional 1–handle to be a
thickening of I ×H into the bounding Xi ’s on either side of I ×Fg . Add such
a 1–handle to connect each Xi to another Xi across a sloping line segment,
for i = 1, 2, 3. Doing this twice for X1 , once along a SW-NE sloping line and
once along a NW-SE sloping one as in Figure 9, we see that X1 has become
connected and is a 4–dimensional handlebody with 2g+1 1–handles. Similarly
with X2 and X3 .

Next we calculate X1 ∩ X2 . Its various parts are shown in Figure 10. Note
that the sloping edges with labels H2g arise from I × Fg by having removed
the I ×H . Thus we have Hg ∪H2g ∪Hg ∪H2g ∪ 4 1–handles, and three of the
1–handles cancel 0–handles leaving H6g+1 = X1 ∩X2 = X2 ∩X3 = X3 ∩X1 .
Then the central fiber Fg′ of the trisection has genus g′ = 6g + 1 and gives a
Heegaard splitting of ∂Xi = #2g+1S

1 × S2 . Note that k = 2g + 1 and we can
check that χ(X) = 0 = 2 + g′ − 3k .

Surface bundles over S2 . Now suppose that X4 fibers over S2 with fiber F
a closed surface of genus gF . We construct a trisection in a similar fashion to

11



the preceding example.

Let π : X → S2 be the fibration. Identify S2 with a cube and trisect S2 as
S2 = A1 ∪ A2 ∪ A3 , where each Ai is the union of two opposite (closed) faces
of the cube. Choose disjoint sections σ1 , σ2 and σ3 over A1 , A2 and A3 ,
respectively, and let Ni be a closed tubular neighborhood of σi , for i = 1, 2, 3,
with the Ni ’s also disjoint. The trisection of X is X = X1 ∪X2 ∪X3 where

Xi = (π−1(Ai) \ N̊i) ∪Ni+1,

with indices taken mod 3.

We now verify that this is indeed a trisection, and compute g and k along the
way. First, π−1(Ai) is two copies of D2×F . Next, removing N̊i leaves us with
two copies of D2 × F ′ , where F ′ has genus gF and one boundary component.
Thus π−1(Ai)\ N̊i has two 0–handles and 4gF 1–handles. Finally, Ni+1 is two
1–handles connecting the two components of π−1(Ai) \ N̊i . Thus one of the
0–handles is cancelled by one of these two 1–handles, and we are left with one
0–handle and k = 4gF + 1 1–handles.

Now we consider the pairwise intersections. The 3–dimensional intersection
X1 ∩X2 is the union of four pieces:

• (π−1(A1) \ N̊1) ∩ (π−1(A2) \ N̊2): Since A1 and A2 intersect along four
edges of the cube, this is four copies of [0, 1] × F ′′ , where F ′′ has genus
gF and two boundary components. In other words, this 3–manifold is
built from four 0–handles and 4(2gF + 1) = 8gF + 4 1–handles.

• (π−1(A1)\N̊1)∩N3 : This sits over the four edges making up A1∩A3 , and
thus contributes four 1–handles, two connecting two of the components
above, and two connecting the other two. Cancelling two of the 0–handles
from the preceding step with two of these 1–handles, we are left with two
0–handles and 8gF + 6 1–handles.

• N2 ∩ (π−1(A2) \ N̊2): This is just ∂N2 , which is two copies of D2 × S1 ,
joining up the four copies of [0, 1] × F ′′ , from the first step above, in
pairs, with the S1 factor in D2 × S1 lining up with one of the boundary
components of the F ′′ factor of [0, 1] × F ′′ . Thus we get two new 1–
handles and two new 2–handles. One of the 1–handles cancels a 0–
handle, and both 2–handles cancel 1–handles. This leaves us with one
0–handle and 8gF + 6 + 1− 2 = 8gF + 5 1–handles.

• N2 ∩N3 : This is empty.

Thus X1 ∩X2 is a 3–dimensional handlebody with genus g = 8gF +5, and the
same holds for X2 ∩X3 and X3 ∩X1 .
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Figure 11: A genus 5 trisection diagram for S2×S2 obtained by seeing S2×S2

as an S2 bundle over a cube. The surface shown here is naturally the boundary
of a tubular neighborhood of the 1–skeleton of a cube.

The triple intersection is necessarily the boundary of each pairwise intersection,
so we see that we have a trisection with k = 4gF + 1 and g = 8gF + 5. This
gives χ = 2+ g− 3k = 4− 4gF , which is what we expect for a genus gF bundle
over S2 .

When this technique is applied to S2 × S2 we get the genus 5 diagram in
Figure 11. With some work this can be shown to be handle slide and diffeo-
morphism equivalent to a single stabilization of the genus 2 diagram of S2×S2

in Figure 6.

Gluing maps: A 4–manifold X with a trisection (X1,X2,X3) is determined
up to diffeomorphism by the data of k , g and three gluing maps between the
sectors; see Figure 12. Here we discuss this gluing data carefully and show how
to reduce the data to two elements of the mapping class group of a closed genus
g surface satisfying certain constraints.

Let X1 , X2 and X3 be copies of Zk = ♮k(S1×B3). Let Yk = ∂Zk = Y +
k,g ∪Y

−

k,g

be the standard genus g Heegaard splitting of Yk = ♯k(S1 × S2) with Hk,g =
Y +
k,g ∩Y

−

k,g the Heegaard surface, with a fixed identification Hk,g
∼= Fg . We can

then construct a 4–manifold with three diffeomorphisms ψi : Y
−

k,g → −Y +
k,g , for

i = 1, 2, 3, such that ψi glues Xi to Xi+1 (indices taken mod. 3) by gluing the
copy of Y −

k,g in ∂Xi to the copy of Y +
k,g in ∂Xi+1 . Let φi = ψi|Fg : Fg → Fg

and note that we need φ3 ◦ φ2 ◦ φ1 to be isotopic to the identity in order for
the resulting manifold to close at the central fiber Fg . Furthermore, since an
automorphism of a 3–dimensional handlebody is completely determined up to
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Figure 12: Gluing maps.

isotopy by its restriction to the boundary surface, this entire construction is
actually determined by the two (isotopy classes of) maps φ1, φ2 : Fg → Fg ,
with φ3 = φ−1

1 ◦ φ−1
2 .

However, this characterization is slightly misleading because an arbitrary pair
φ1, φ2 of mapping classes of Fg does not necessarily produce a trisected 4–
manifold: We need that each of φ1 , φ2 and φ−1

1 ◦ φ−1
2 extends to a diffeomor-

phism ψi : Y
−

k,g → −Y +
k,g , a slightly messy condition that is not entirely trivial

to check.

Gluing maps from model manifolds: In fact we can reduce the gluing map
data to a single gluing map if we construct trisected 4–manifolds by cutting
open and regluing fixed model trisected manifolds. For each 0 ≤ k ≤ g let
Xk,g = (♯kS1×S3)♯(♯g−k

CP 2). Note that Xk,g has a standard (k, g)–trisection

Xk,g = (Xk,g
1 ,Xk,g

2 ,Xk,g
3 ), because S1 × S3 has a standard (1, 1)–trisection

and CP 2 has a standard (0, 1)–trisection. Also, for each such (k, g), fix an

identification of Xk,g
1 ∩ Xk,g

2 with the standard genus g handlebody Hg =
♮gS1 ×B2 . Then any other 4–manifold X with a (k, g)–trisection is obtained

from Xk,g by cutting Xk,g
1 , Xk,g

2 and Xk,g
3 apart, regluing Xk,g

1 to Xk,g
2 by

some automorphism φ of Xk,g
1 ∩ Xk,g

2 = Hg , and then observing that gluing

in Xk,g
3 amounts to attaching a collection of 3–handles and a 4–handle, so

that no other gluing data needs to be specified. Again, not any automorphism
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φ : Hg → Hg will work, but now one needs to verify that ∂(Xk,g
1 ∪φ X

k,g
2 ) is

diffeomorphic to ♯k(S1×S2) in order to verify that φ actually produces a closed
trisected 4–manifold.

Lagrangians, Maslov index, signature and intersection triples: Given
a genus g trisection diagram (Fg, α, β, γ), one can write down a triple
(Qαβ , Qβγ , Qγα) of g × g integer matrices, giving the intersection pairing be-
tween curves. Our uniqueness theorem tells us that this intersection triple is
uniquely determined by the diffeomorphism type of X(Fg, α, β, γ) up to elemen-
tary row-column operations and stabilization. Here, the row-column operations
are precisely those corresponding to handle slides. Thus, for example, sliding
α1 over α2 corresponds to adding row 2 to row 1 in Qαβ while simultaneously

adding column 2 to column 1 in Qγα . Stabilization replaces (Qαβ, Qβγ , Qγα)
with the following triple:







Qαβ 0

0
1 0 0
0 1 0
0 0 0


 ,




Qβγ 0

0
1 0 0
0 0 0
0 0 1


 ,




Qγα 0

0
0 0 0
0 1 0
0 0 1







The fact that each pair of collections of curves gives a Heegaard diagram for
♯kS1×S2 tells us that each of the three matrices is, independently, row-column

equivalent to

[
0k 0
0 Ig−k

]
. We thus have an invariant of 4–manifolds taking

values in this set of triples, subject to this ♯kS1 × S2 condition, modulo an
interesting equivalence relation. Of course, this invariant may contain nothing
more than homological information, for example, but even if that were true it
would be interesting to understand exactly how this works.

Alternatively, one can define three Lagrangian subspaces (Lα, Lβ, Lγ) in the
symplectic vector space V = H1(Fg;R); i.e. Lα is the kernel of the map
H1(Fg;R) → H1(Hα;R) where Hα is the handlebody determined by the α
curves, and so on. One immediately recovers the three intersection matrices
above as the symplectic form on V restricted to each pair of Lagrangians,
relative to chosen bases on the Lagrangians. Thus our uniqueness theorem
also gives us a 4–manifold invariant taking values in the set of quadruples
(V,Lα, Lβ, Lγ), where V is a symplectic vector space and the L’s are lin-
ear Lagrangian subspaces, subject again to the ♯kS1 × S2 condition, mod-
ulo an equivalence relation. This equivalence relation is linear symplectomor-
phism and stabilization, which in this case means taking the direct sum with
(R6, 〈x1, x2, y3〉, 〈x1, y2, x3〉, 〈y1, x2, x3〉).
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This Lagrangian set up has in fact been studied in the more general context of
Wall’s [13] nonadditivity of the signature. A direct application of the interpre-
tation in [2] of Wall’s nonadditivity result shows that the signature of a closed
4–manifold with a trisection is precisely the Maslov index of this associated
triple of Lagrangians.

However, one expects more information to be encoded in these Langrangians
triples than just the signature. In particular, the Maslov index ignores the inte-
ger lattice structure of H1(Fg,Z) ⊂ H1(Fg,R). Quotienting out by this lattice
gives us a triple of Lagrangian g–tori in a symplectic 2g–torus, and one again
gets a 4–manifold invariant taking values in these triples mod symplectomor-
phism and stabilization. It seems that a further study of this set up could be
fruitful.

Curve complex perspective: To record much more data than simply the
homology classes of curves which bound disks in the three handlebodies, we can
consider, for each handlebody H12 , H23 and H31 , the subsets U12 , U23 and
U31 , respectively of the curve complex for Fg given by those essential simple
closed curves which bound disks in the respective handlebody. Because each
pair of handlebodies gives ♯k(S1 × S2), we know that the three intersections
U12 ∩ U23 , U23 ∩ U31 and U31 ∩ U12 are nonempty. This perspective raises
many interesting questions, such as: What is the minimal area of a triangle
with vertices in the three intersections? If U12 ∩ U23 ∩ U31 is nonempty, what
does that tell us about X ? If the gluing map coming from the model manifold
construction described above is, for example, pseudo-Anosov, does this tell us
that the three subcomplexes are “far apart” in any sense?

3 Existence via Morse 2–functions

The proof presented in this section is an application of tools developed in [4],
using Morse 2–functions. In the following section we will rewrite the proof
entirely in terms of ordinary Morse functions and handle decompositions, but
the trisection is so natural from the point of view of Morse 2–functions that
we feel this proof is worth presenting. However, to give the basic idea for those
most comfortable with the language of handle decompositions, our construction
ends up putting the 0– and 1–handles of X into X1 , the 3– and 4–handles
into X3 , and the 2–handles together with some “connective tissue” into X2 .

A Morse 2–function is a smooth, stable map G : Xn → Σ2 ; in this paper we
will always map to R

2 . (Stable implies generic when mapping to dimension
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two.) Just like Morse functions, Morse 2–functions can be characterized by
local models, and we now give these local models only in the case of n = 4, i.e.
we are considering an R

2–valued Morse 2–function G on a 4–manifold X :

(1) Each regular value q ∈ R
2 has a coordinate neighborhood over which G

looks like F 2 ×B2 → B2 for some closed fiber surface F .

(2) The set of critical points of G is a smooth 1–dimensional submanifold
CritG ⊂ X such that G : CritG → R

2 is an immersion with isolated
semicubical cusps and crossings. The non-cusp points of CritG are called
fold points, and arcs of such points are called folds.

(3) Each point q ∈ G(CritG) which is not a cusp or crossing has a neighbor-
hood U = I × I with coordinates (t, y), with G−1(U) diffeomorphic to
I ×M3 for a 3–dimensional cobordism M , so that G(t, p) = (t, g(p)),
where g :M → I is a Morse function on M with one critical point. The
index of this critical point is then called the index of the fold, although
this is only well-defined up to i 7→ 3 − i. When the image of the fold is
co-oriented, the index is well-defined by insisting that the y–coordinate
on I × I increases in the direction of this co-orientation.

(4) Each cusp point q ∈ G(CritG) has a neighborhood U = I × I with
coordinates (t, y), with G−1(u) = I ×M3 , so that G(t, p) = (t, gt(p)),
where gt is a 1–parameter family of Morse functions on M with no critical
points for t = 0 and a birth of a cancelling pair of critical points at
t = 1/2. In our examples, these two critical points will always be of
index 1 and 2.

(5) Each crossing point q ∈ G(CritG) has a neighborhood U = I × I with
coordinates (t, y), with G−1(u) = I ×M3 , so that G(t, p) = (t, gt(p)),
where gt is a 1–parameter family of Morse functions on M with two
critical points for all t, such that the critical values cross at t = 1/2. In
our examples, these two critical points will never be of index 0 or 3.

The basic example of a Morse 2–function is (t, p) 7→ (t, gt(p)) for an arbitrary
generic homotopy gt between two given Morse functions g0, g1 : M

3 → [0, 1],
and the message of the above local models is that Morse 2–functions look
locally like homotopies between Morse functions, but globally we may not have
a preferred “time” direction. When G is of the form (t, p) 7→ (t, gt(p)), we call
G(CritG) a Cerf graphic [3]. Conversely, given a Morse 2–function G : X4 → R

2

and a rectangle I × I ⊂ R
2 in which G(CritG) has no vertical tangencies, we

can find coordinates in which G is of this form (t, p) 7→ (t, gt(p)), and so again
we will say that G(CritG) is a Cerf graphic in this rectangle.
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z

t

Figure 13: The “eye”, a Cerf graphic in which a pair of cancelling critical points
is born and then dies.

There is one move on Morse 2–functions (i.e. local model for a generic homotopy
between Morse 2–functions) that is central to this paper, which we call the
“introduction of an eye”. In a local chart in which a given Morse 2–function
G on a 4–manifold has no critical points, we can assume G has the form
(t, x, y, z) 7→ (t, x) or, equivalently, (t, x, y, z) 7→ (t, x3 + (t2 + 1)x − y2 + z2)
with t ∈ [−2, 2]. Introducing a parameter s ∈ [−1, 1] we get a homotopy
(t, x, y, z) 7→ (t, x3 + (t2 − s)x − y2 + z2), with s = −1 corresponding to the
given map and s = 1 the end result of “introducing an eye”. Figure 13 shows the
image of the critical locus at s = 1, justifying the terminology. Note that this
is a Cerf graphic in which, as t increases from −2 to 2, we see a Morse function
on x, y, z space which starts with no critical points, develops a cancelling pair of
index 1 and 2 critical points, and then the cancelling pair disappears again so
that at t = 2 there are again no critical points. Note also that the introduction
of an eye takes place in a ball and is localized to a disk in the fiber cross a disk
in the base; thus, as long as fibers are connected, we need only specify a disk in
the base without critical points and then there is a unique, up to isotopy, way
to introduce an eye in that disk.

Proof of Existence, Theorem 4 Throughout we will use coordinates (t, z)
on R

2 , with t horizontal and z vertical. Here is an outline of the proof:

(1) First we will show that there is a Morse 2–function G1 : X → R
2 such

that the image of the fold locus is as in Figure 14. In this and the
following figures, three dots between two curves indicate that there are
some number of parallel copies of the two curves in between. Fold indices
are indicated with labelled transverse arrows. Boxes with folds coming
in from the left and out at the right represent arbitrary Cerf graphics,
with the left-right axis being time. Note that a Cerf graphic may contain
left-cusps, right-cusps and crossings, but may not contain any vertical
tangencies on the image of the fold locus.
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Figure 14: The image of the fold locus for G1 .

(2) In Figure 14, the vertical tangencies of the folds are highlighted in red;
these become critical points of the projection t ◦ G1 : X → R. These
critical values in R are also indicated at the bottom of the diagram along
the t–axis, with their indices.

(3) After constructing G1 , we will show to homotope G1 to G2 such that
the image of the fold locus for G2 is as in Figure 15. Here the two Cerf
graphics have no cusps. We have achieved two goals here: (1) Splitting
the Cerf graphic into two, each involving only critical points of the same
index and no cusps. (2) Replacing each kink that corresponds to an index
2 critical point of t ◦G1 with a pair of cusps.

(4) Figure 16 is simply a redrawing of Figure 15 that highlights a natural
trisection of R2 into three sectors R

2
1 , R

2
2 and R

2
3 . Note that the critical

locus over each sector consists of g components, where g is the genus of
the central fiber. Also, each such component has at most one cusp. We
no longer indicate the indices of the folds; the outermost fold is index 0
pointing inwards, and all other folds are index 1 pointing in.

(5) The form of the folds in Figure 16 is a special case of the form shown
in Figure 17, where now we are not paying attention to which folds in a
given sector, with or without cusps, connect to which folds in the next
sector, with or without cusps, and we allow for arbitrary Cerf graphics
(without cusps) between the sectors.
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Figure 15: The image of the fold locus for G2 .
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2
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Figure 16: A more symmetric drawing of the image of the fold locus for G2 .
We no longer indicate the indices of the folds; the outermost fold is index 0
going inwards, the others are index 1 going inwards.

20



Figure 17: A slightly more general form for the image of the fold locus, which
fits G2 .

(6) Now we have G2 such that the image of the fold locus is as in Figure 17.
At this point we could take Xi = G−1

2 (R2
i ) and we would have each Xi

diffeomorphic to ♮kiS1 × B3 for different ki ’s. There is one last step to
arrange that the ki ’s are equal: In fact, ki is equal to the number of folds
in sector Xi without cusps. We will show how to add a fold without a
cusp to any one sector while adding a fold with a cusp to each of the
other two sectors. This allows us to construct a homotopy from G2 to
G3 , such that G3 has the image of its fold locus of the same form as G2

(i.e. as in Figure 17), with the same number of folds without cusps in
each sector, i.e. k1 = k2 = k3 = k .

(7) Finally we will justify the claim that each Xi = G−1
3 (R2

i ) is diffeomorphic
to ♮kS1 ×B3 with overlap maps as advertised.

We now fill in the details.

Begin with a handle decomposition of X with one 0–handle, i1 1–handles, i2
2–handles, i3 3–handles and one 4–handle. The union of the 0– and 1–handles,
X1 is diffeomorphic to I × (♮i1S1 ×B2). Map this to I × I by (t, p) 7→ (t, g(p))
where g : ♮i1S1 × B2 → I is the standard Morse function with one index 0
critical point and i1 index 1 critical points. Post-compose this map with a
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Figure 18: The first Morse 2–function, G1 , on the 0– and 1–handles of X .

diffeomorphism from I × I to a half-disk and we have constructed G1 on the
union of the 0– and 1–handles so that the image of the fold locus is as in the
right half of Figure 18.

Now note that ∂X1 = ♯i1(S1 × S2) sits over the right edge of the half disk in
Figure 18 and that the vertical Morse function on ∂X1 , i.e. z ◦ G1|∂X1 is the
standard Morse function with i1 index 1 critical points and i1 index 2 critical
points, inducing the standard genus i1 splitting of ∂X1 , with Heegaard surface
F .

Consider the framed attaching link L ⊂ ∂X1 for the 2–handles of X . Generi-
cally L will be disjoint in ∂X1 from the ascending 1–manifolds of the index 2
critical points of z ◦G1|∂X1 as well as the descending 1–manifolds of the index
1 critical points. Thus L can be projected onto the Heegaard surface F along
gradient flow lines to give an immersed curve L in F with at worst double
points. By adding kinks if necessary, we can assume that the handle framing of
L agrees with the “blackboard framing” coming from L ⊂ F . Then by stabi-
lizing this Heegaard splitting once for each crossing of L, we can resolve these
crossings and get L to lie in the Heegaard surface with framing coming from the
surface. This process translates into an extension of the thus-far constructed
G1 from X1 to X1 ∪ ([0, 1] × ∂X1) with fold locus as in Figure 19, with one
cusp for each stabilization. In other words, the sequence of stabilizations trans-
lates into a homotopy gt from g0 , the standard Morse function on ♯i1(S1×S2),
to g1 , the stabilized Morse function. This homotopy then becomes a Morse
2–function on the collar [0, 1] × ∂X1 .

Now let F refer to the stabilized Heegaard surface, in which L lies. Attaching
a 4–dimensional 2–handle to X1 along a component K of L is the same as
attaching I times a 3–dimensional 2–handle to X1 along I×K ⊂ I×F ⊂ ∂X1 .
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Figure 19: G1 extended to a collar on ∂X1 . In the two vertical slices shown,
both diffeomorphic to ♯n(S1×S2), the Heegaard surface sits over the highlighted
red points. The framed attaching link L for the 2–handles of X lies in the
Heegaard surface for the right-most Morse function, i.e. over the right-most
red point, with framing coming from the surface.

In Figure 20 we show the resulting Morse 2–function at the left, where the
handle sits over a vertical rectangle. Next we bend this rectangle to make the
image again a half-disk. Finally, noting that the vertical Morse function at the
right edge now has an index 2 critical value below an index 1 critical value, we
switch these values to get the Morse 2–function at the right side of Figure 20.

Note that everything in the preceding paragraph happened in a neighborhood
of K , so that the rest of L still lies in the middle Heegaard surface for the
Morse function at the right edge of the final diagram in Figure 20. Thus we
can attach each 4–dimensional 2–handle this way to get the Morse 2–function
at the left side of Figure 21. Each 2–handle of X corresponds to a kink in
the image of the folds, i.e. a smoothly immersed arc with a single transverse
double point. Repeating our construction for X1 with the union of the 3– and
4–handles, we construct the Morse 2–function at the right side of Figure 21.
The two halves give vertical Morse functions on the boundary of the union of
the 3– and 4–handles, which are related by some Cerf graphic. Putting this
Cerf graphic in between the two parts of Figure 21 gives us G1 as in Figure 14.

To get to Figure 15, first we take the Cerf graphic section of Figure 14 and pull
the births (left-cusps) to the left of the Cerf graphic and the deaths (right-cusps)
to the right, and then pull all index 1 critical points below all index 2 critical
points. Then the left-cusps can be pulled further left, past the kinks which
correspond to 4–dimensional 2–handles, because the 4–dimensional 2–handle
attachments are independent of the 3–dimensional stabilizations corresponding
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Figure 20: G1 after attaching a 4–dimensional 2–handle.
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Figure 21: Two halves of G1 : the 0–, 1– and 2–handles on the left and the
3– and 4–handles on the right. Connecting them with a Cerf graphic gives
Figure 14.
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Figure 22: Pulling cusps out of the Cerf graphic. Here we suppress the “three
dots” notation as well as the indices of the folds, as these are understood from
earlier figures.
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Figure 23: Turning kinks into pairs of cusps.

to the cusps. This is shown in Figure 22.

Next we homotope the kinks into pairs of cusps as in Figure 23. The first step
of Figure 23 introduces a swallowtail at the vertical tangency of the kink; this
move has been discussed extensively elsewhere [6] and is a standard singularity
that occurs in a homotopy between homotopies between Morse functions. The
second step moves an arc of index 1 critical points in a homotopy (Cerf graphic)
below an arc of index 2 critical points. This is also standard and is possible
because the descending manifold for the index 1 point remains disjoint from the
ascending manifold for the index 2 point throughout the homotopy. (Equiv-
alently, in homotopies between Morse functions we never expect 1–handles to
slide over 2–handles.)

Finally, Figure 24 shows how to add folds and cusps to a Morse 2–function as
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Figure 24: Adding an extra fold without cusps in one sector; again we suppress
the “three dots” notation and the fold indices.

in Figure 17 so as to increase the number of folds without cusps in one of the
three sectors. Here we are introducing an eye, as in Figure 13, modified by a
slight isotopy. Note that the transition from the second to the third diagram in
the figure is not essential, but only serves to put the resulting diagram in the
form of Figure 17. Depending on how we orient the new eye with respect to
the trisection of R2 , we either add the fold without cusps to R

2
1 , R

2
2 , or R

2
3 .

(Note that if we do this operation three times, once for each sector, we increase
k by 1 and g by 3; this is precisely a stabilization of the trisection, as will be
shown in Section 5.)

Now we need to show that, having put our Morse 2–function finally into the
form of Figure 17, with k folds in each sector without cusps and g − k folds
with cusps, then for each i, G−1(R2

i ) = Xi
∼= ♮k(S1 × B3). However, we

have already seen this: Each sector, ignoring the Cerf graphic block, looks
just like Figure 19, which we already know is ♮k(S1×B3) with a (g− k)–times
stabilized standard Heegaard splitting on the boundary. The Cerf graphic block
connecting one sector to another is a product which does not interfere with the
Heegaard splitting.

4 Trisections and handle decompositions

The techniques of the previous section lead to a relationship between trisections
and handle decompositions equipped with certain extra data. We will use this
relationship both to provide an alternate proof of Theorem 4 and to prove
Theorem 11.

By a system of compressing disks for a 3–dimensional handlebody H of genus
g , we mean a collection of properly embedded disks D1, . . . ,Dg ⊂ H such that
cutting H open along D1 ∪ . . . ∪Dg yields a 3–ball.
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Lemma 13 If X = X1 ∪ X2 ∪ X3 is a trisection of a 4–manifold X , then
there is a handle decomposition of X as in Theorem 4 satisfying the following
properties:

(1) X1 is the union of the 0– and 1–handles.

(2) Considering the Heegaard splitting ∂X1 = H12 ∪ H31 with Heegaard
surface F , the attaching link L for the 2–handles lies in the interior of
H12 .

(3) The framed attaching link L = K1 ∪ . . . ∪ Kg−k is isotopic in H12 to
a framed link L′ = K ′

1 ∪ . . . ∪ K ′

g−k ⊂ F , with framings equal to the
framings induced by F .

(4) There is a system of compressing disks D1, . . . ,Dg for H12 such that
the curves K ′

1, . . . ,K
′

g−k are geometrically dual in F to the curves
∂D1, . . . , ∂Dg−k . In other words, each K ′

j intersects ∂Dj transversely
once and is disjoint from all other ∂Di ’s.

(5) There is a tubular neighborhood N = [−ǫ, ǫ]×H12 of H12 with [−ǫ, 0]×
H12 = N ∩ X1 , such that X2 is the union of [0, ǫ] × H12 with the 2–
handles.

Proof Each sector of the trisection of X is diffeomorphic to ♮k(S1×B3) with a
genus g splitting of its boundary. Thus it has a standard Morse 2–function onto
a wedge in R2 , see Figure 17. Two sectors meet at Xi ∩Xi+1 = ♮k(S1 × B2),
and the two Morse 2–functions on the two sectors give two Morse functions on
the intersection Xi ∩Xi+1 . The two Morse functions are homotopic and thus
give a Cerf diagram which can be inserted into the little wedges in Figure 17.
In the existence proof from the previous section we avoided cusps in the Cerf
graphic boxes, but at this point we do not care; any Cerf graphic will do.

An isotopy of R2 makes the picture look like Figure 25. Now projection to the
horizontal axis gives a Morse function in which the vertical tangencies become
Morse critical points. X1 , to the left of the vertical red line, is clearly the union
of the 0– and 1–handles. X2 , between the legs of the red letter h is then a
handlebody H12 , cross I , with g−k 2–handles attached. And X3 is obviously
what remains.

We only need to show now that the attaching link for the 2–handles is as
advertised. This can be seen from the fact that the attaching circle for each
2–handle, between the legs of the h, is one of a dual pair of curves on the
fiber near a cusp. The other curve in the dual pair is the attaching curve for
the fold that cuts across H12 and gives one of the compressing disks for this
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Figure 25: Extracting a handle decomposition from a trisection.

handlebody. This is illustrated in Figure 26, which shows a zoomed in region of
Figure 25. The fiber over a specific point is drawn as a once punctured torus;
this is just part of the fiber, but the rest of the fiber does not play a role in
this local picture. The attaching circles for the two folds are drawn as green
and blue circles on the fiber. This is just the usual picture of the fiber between
the two arms of a cusp, with attaching circles being geometrically dual. Here,
however, we reinterpret this picture to see the blue circle as the boundary of a
compressing disk for the handlebody lying over the vertical dotted red line, and
to see the green circle as the attaching circle for the 4–dimensional 2–handle
coming from the vertical tangency in the fold.

Lemma 14 Consider a handle decomposition of a 4–manifold X4 with one
0–handle, k 1–handles, g − k 2–handles, k 3–handles and one 4–handle. Let
X1 be the union of the 0– and 1–handles. Suppose there is a genus g Heegaard
splitting ∂X1 = H12∪H31 of ∂X1 satisfying the following properties in relation
to the framed attaching link L for the 2–handles:

(1) L lies in the interior of H12 .

(2) L is isotopic in H12 to a framed link L′ ⊂ F , with framing equal to the
framing induced by F .
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Figure 26: Zooming in on a region of Figure 25.

(3) There is a system of compressing disks D1, . . . ,Dg for H12 such that the
g − k components of L′ are, respectively, geometrically dual in F to the
curves ∂D1, . . . , ∂Dg−k .

Let N = [−ǫ, ǫ] ×H12 be a small tubular neighborhood of H12 with [−ǫ, 0] ×
H12 = N∩X1 , which the 2–handles intersect as [0, ǫ]×νL , where νL is a tubular
neighborhood of L in H12 . Declare X2 to be the union of [0, ǫ]×H12 with the
2–handles, and declare X3 to be what remains (the closure of X \ (X1 ∪X2)).
Then X = X1 ∪X2 ∪X3 is a trisection.

Proof Almost everything we need for X1 ∪ X2 ∪ X3 to be a trisection is
immediate:

(1) X1 and X3 are both diffeomorphic to ♮k(S1 ×B3).

(2) H31 = X3 ∩X1 and H12 = X1 ∩X2 are genus g handlebodies.

(3) F = X1 ∩X2 ∩X3 is a genus g surface.

It remains to verify that X2
∼= ♮k(S1 ×B3) and that H23 = X2 ∩X3 is a genus

g handlebody.

In fact X2 is built by attaching g − k 2–handles to X12
∼= ♮k(S1 × B2) along

g − k copies of S1 × {0} ⊂ S1 × B2 in the first g − k S1 × B3 summands.
Thus the 2–handles “cancel” g−k of the S1×B3 ’s, giving both desired results
immediately.

Using Lemma 14, we now present a proof of the existence of trisections in the
spirit of [8]:
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Proof of Theorem 4, Existence Start with a handle decomposition of X4

with one 0–handle, k1 1–handles, k2 2–handles, k3 3–handles and one 4–
handle. Add cancelling 1–2 and 2–3 pairs if necessary so as to arrange that
k1 = k3 . Let X1 be the union of the 0–handle and the 1–handles. Note that
∂X1 is a connected sum of k1 copies of S1 × S2 . Let L ⊂ ∂X1 be the framed
attaching link for the 2–handles.

Consider the genus k1 Heegaard splitting of ∂X1 as ∂X1 = H12∪H31 with F =
H12 ∩H31 . (We will soon be stabilizing this Heegaard splitting, but after each
stabilization we will use the same names for the surface and the handlebodies.)
The attaching link L ⊂ ∂X1 can be projected onto the Heegaard surface F with
transverse double points (crossings), so that the handle framing is the surface
framing. (Add kinks to get the framing right.) Make sure that each component
has at least one crossing using Reidemeister 2 moves if necessary. Let c be the
number of crossings in this projection.

If c ≤ k2 then we are almost done. Stabilize the Heegaard splitting exactly k2
times, with c of these stabilizations occuring at the crossings. Then L can be
isotoped so as to resolve all the crossings by sending the over strand at each
crossing over the new S1 ×S1 summand in F coming from the stabilization at
that crossing. Now we have a genus g = k1 + k2 Heegaard splitting. Letting
k = k1 and g = k1+k2 , and pushing L into the interior of H12 , we now satisfy
the hypotheses of Lemma 14 and apply that lemma to produce our trisection.
(We get duality to a system of meridians as follows: Each component K of L
goes over at least one stabilization which no other components go over, and
therefore is the unique component intersect the meridian for that stabilization.
For every other meridian which K intersects, slide that meridian’s compressing
disk over the compressing disk corresponding to the stabilization singled out in
the preceding sentence.)

If c > k2 then add c− k2 cancelling 1–2 pairs and c− k2 cancelling 2–3 pairs
to the original handle decomposition of X . Now we have k′1 = k1 + c− k2 1–
handles, and the same number of 3–handles, as well as k′2 = 2c−k2 2–handles.
We consider the new X ′

1 = X1♮
c−k2S1×B3 with the natural genus k′1 Heegaard

splitting ∂X ′

1 = H ′

12 ∪H
′

31 with F ′ = H ′

12 ∩H
′

31 . The original attaching link
L still projects onto F ′ in the same way, with the same crossings, since F ′ is
naturally F♯c−k2S1 × S1 .

However, we also have 2(c−k2) new 2–handles. Half of these, coming from the
1–2 pairs, are attached along the meridians of the c−k2 new S1×S1 summands
in F ′ and thus immediately satisfy the conditions in Lemma 14. The other half,
coming from the 2–3 pairs, are attached along 0–framed unknots, which project
onto F ′ as circles bounding disks in F ′ .
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Now stabilize the new Heegaard splitting 2c − k2 times: The first c of these
stabilizations should happen at the crossings of L, allowing us to resolve cross-
ings as before. The other c − k2 of the stabilizations should occur next to the
c − k2 0–framed unknots. Then each of these unknots is isotoped to go over
the new S1 × S1 summand coming from the adjacent stabilization. Now the
entire attaching link satisfies the hypotheses of Lemma 14. The new genus of
the stabilized Heegaard splitting of ∂X ′

1 is g′ = k′1 + 2c− k2 . To conclude the
theorem by applying Lemma 14 we need that k′2 = g′− k′1 , and this is precisely
what we have arranged.

5 Uniqueness

We first prove that the stabilization operation of Definition 8 really does produce
a new trisection. This can be done directly, but instead we will do so by showing
that, from a Morse 2–function point of view, this stabilization corresponds to
adding three eyes at the center of a trisected Morse 2–function. After that we
can proceed with the proof of uniqueness.

Proof of Lemma 10 We are given a trisection (X1,X2,X3) of X , with han-
dlebodies Hij = Xi ∩ Xj , properly embedded arcs Aij ⊂ Hij , and regular
neighborhoods of these arcs Nij ⊂ X .

As we will see at the beginning of the proof of Theorem 11, it is easy to construct
a Morse 2–function as in Figure 17 which recovers this trisection. We claim
that adding three eyes arranged as in Figure 27 modifies each sector Xi exactly
as in Definition 8, and since the new Morse 2–function again gives a trisection,
then stabilization as defined in Definition 8 produces a trisection.

We see that the claim is true one eye at a time. Each time we add an eye, first
add it away from the center straddling the intersection of two sectors, such as
H31 , as on the left in Figure 28. We will then pull the lower fold across the
central fiber to achieve the right-hand diagram in Figure 28. Up to isotopy,
moving from the left to the right in this figure is the same as not moving the
eye, but instead enlarging the lower sector X2 by attaching the inverse image of
the green region labelled N . This inverse image is in fact a 1–handle cobordism
attached to X2 , since this fold is an index 1 fold going in towards the middle
of the eye. Furthermore, the 1–handle is cancelled by a 2–handle immediately
above it. The 1–handle and 2–handle are actually I cross 3–dimensional 1–
and 2–handles, respectively, and thus we see that we have simply removed a
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Figure 27: Stabilizing a Morse 2–function by adding three “eyes”.

X2

N

H31

X′

2

Figure 28: Adding one eye to a trisected Morse 2–function.

neighborhood of an arc in H31 from both X1 and X3 and added it to X2 .
Repeat this for each of the three eyes.

Proof of Uniqueness, Theorem 11 Consider two trisections of the same
4–manifold: X4 = X1 ∪ X2 ∪ X3 = X ′

1 ∪ X ′

2 ∪ X ′

3 . Apply Lemma 13 to
each trisection to get two handle decompositions D and D′ of X , respectively,
with corresponding Heegaard splittings of ∂X1 , with attaching links L and L′

behaving as in Lemma 13. Cerf theory tells us that we can get from D to D′

by the following operations:

(1) Add cancelling 1–2 and 2–3 pairs to both D and D′ .

(2) Slide 1–handles over 1–handles, 2–handles over 2–handles and 3–handles
over 3–handles.

(3) Isotope the handles and their attaching maps without sliding over any
handles.
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From the description of trisection stabilization in the proof of Lemma 10 above,
we can see that trisection stabilization adds both a 1–2 pair and a 2–3 pair
to an associated handle decomposition. Thus, after arranging that we add
the same number of 1–2 pairs as 2–3 pairs, we can stabilize the two original
trisections to take care of the first operation above.

Clearly sliding 1–handles over 1–handles and 3–handles over 3–handles, as well
as isotoping 1–handles and 3–handles without handle slides, does not change
the associated trisection.

Thus we are left to investigate the effect of 2–handle slides and 2–handle iso-
topies.

Suppose that we wish to perform a single 2–handle slide to the handle decom-
position D . Associated to the trisection T which gives rise to D we have a
Heegaard splitting H12 ∪ H31 for ∂X1 , with the attaching link L for the 2–
handles of D lying in H12 . Isotope L into ∂H12 = F so that the components
of L are dual to the g−k curves in a system of g meridinal curves (boundaries
of compressing disks), as in Lemma 13. The handle slide involves a framed
arc connecting two components K1 and K2 of L. This arc can be projected
(following the flow of a Morse function of ∂X1 for the given Heegaard splitting)
onto F , but with crossings. We can arrange for its framing to agree with the
surface framing with kinks, as usual. We want to avoid self-crossings as well
as crossings between the arc and L and between the arc and the system of
meridinal curves.

Stabilizing the Heegaard splitting, however, allows us to resolve the crossings.
In other words, we get a new Heegaard splitting ∂X1 = H ′

12∪H
′

31 obtained from
H12∪H31 by Heegaard splitting stabilizations and isotopy such that L and the
band lie in ∂H ′

12 = F ′ , still maintaining the property that the components of
L are dual to the first g − k meridinal curves in a system of meridinal curves
of H ′

12 . In addition, the bands are disjoint from these g − k meridinal curves.
(Note that we can do this without moving L or the bands, but just by stabilizing
and isotoping the Heegaard splitting.) Then sliding one component of L over
another along the chosen band maintains this property; we have to change one
of the meridinal curves in the system of compressing disks by a handle slide as
well.

Again, from the proof of Lemma 10, we see that stabilization of the Heegaard
splitting of ∂X1 can be achieved by stabilizing the trisection, at the expense of
introducing cancelling 1–2 and 2–3 pairs to the associated handle decomposi-
tion.
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Thus we have shown that, if D and D′ are related by handle slides supported
in small neighborhoods of arcs in ∂X1 , then they are adapted to trisections
related by trisection stabilization and isotopy.

Finally, suppose that D and D′ are related only by an isotopy of the 2–handles
and their attaching maps, without any handle slides. Then this isotopy extends
to an isotopy of X with the result that we can assume that the handle decom-
positions are identical, and the only difference between the trisections is the
Heegaard splitting of ∂X1 .

So we have two Heegaard splittings ∂X1 = H12∪H31 = H ′

12∪H
′

31 , respectively,
coming from T and T ′ . The fixed attaching link L for the 2–handles lies in
both H12 and H ′

12 , in both cases satisfying the condition of being dual to
meridinal curves.

Note that both H12 ∪H31 and H ′

12 ∪ H
′

31 are genus g Heegaard splittings of
∂X1

∼= ♮k(S1 × S2), so that Waldhausen’s theorem [12] gives us an isotopy of
∂X1 taking H12 to H ′

12 . However, this does not imply that the trisections T
and T ′ are isotopic, because this isotopy will in general move the link L. If we
can find an isotopy that does not move L, then we will be done, but first we
will probably need to stabilize.

To see how to do this, construct two Morse functions f and f ′ on ∂X1 with
regular values a < b such that:

(1) f and f ′ agree on f−1(−∞, a] = f ′−1(−∞, a], which is a tubular neigh-
borhood of L (thus each has g−k index 0 critical points and g−k index
1 critical points),

(2) f−1(−∞, b] = H12 ,

(3) f ′−1(−∞, b] = H ′

12 ,

(4) f and f ′ have only critical values of index 1 in [a, b] and critical values
of index 2 and 3 in [b,∞).

Now Cerf theory gives us a homotopy ft from f0 = f to f1 = f ′ which involves
1–2 births and deaths on f−1(b) and otherwise no critical values crossing b,
and such that ft = f = f ′ on f−1(∞, a]. Thus, after stabilizing the Heegaard
splittings away from L, there is an isotopy fixing L taking the one Heegaard
splitting to the other.

Again, the Heegaard splitting stabilizations are achieved by trisection stabiliza-
tions.
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Remark 15 Morally it seems that there should be a Morse 2–function proof of
uniqueness that starts with a generic homotopy between two Morse 2–functions
corresponding to two given trisections. Then the proof would homotope this
homotopy so as to arrange that the Cerf 2–graphic in [0, 1] × R

2 , a surface
of folds with cusps and higher codimension singularities, is in a nice position
with respect to the standard trisection of [0, 1] × R

2 . This surface of folds is,
however, not trivial to work with. A good model might be the method of braid
foliations used by Birman and Menasco to prove Markov’s theorem in [1].

6 The relative case

When ∂X 6= ∅, we should define a trisection as the kind of subdivision of X
which naturally arises from a Morse 2–function G : X → B2 where B2 is
trisected as in Figure 1, the locus of critical values behaves well with respect to
this trisection of B2 , and the trisection of X is just G−1 of the three sectors
of B2 . “Behaving well” should mean that the folds all have index 1 when
transversely oriented towards the center of B2 , that the only tangencies to rays
of B2 are the cusps, that there is at most one cusp per fold in each sector, and
that each sector has the same number of cusps. We now formulate this without
mention of a Morse 2–function.

First, when M3 has a boundary ∂M , then a Heegaard splitting is a splitting
into compression bodies rather than solid handlebodies. Traditionally, a com-
pression body is the result of attaching n ≤ k 3–dimensional 2–handles to
{1} × Fk ⊂ [0, 1] × Fk so as to get a cobordism from Fk to Fk−n , where Fk

is a closed surface of genus k . In fact, we can even consider the case where
F is a compact surface Fk,b of genus k with b ≥ 0 boundary components, in
which case we get a cobordism to F(k−n),b . Note that the diffeomorphism type
of such a cobordism is completely determined by k , b and n; let Ck,b,n denote
a standard model for this compression body. To summarize, both ends of Ck,b,n

are surfaces with b boundary components, the higher genus end has genus k
and there are n compression disks yielding a lower genus end with genus k−n.

Now consider Zk,b,n = [0, 1]×Ck,b,n . Part of ∂Zk,b,n is Yk,b,n = ({0}×Ck,b,n)∪
([0, 1] × Fk,b) ∪ ({1} × Ck,b,n), which has a natural genus k Heegaard splitting
into two compression bodies Y +

k,b,n = ([1/2, 1]×Fk,b)∪({1}×Ck,b,n) and Y
−

k,b,n =

({0} × Ck,b,n) ∪ [0, 1/2] × Fk,b). Finally, given any g ≥ k , let Yk,b,n = Y +
k,b,n,g ∪

Y −

k,b,n,g be the genus g Heegaard splitting obtained from the natural genus k
splitting by stabilizing g − k times.
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Figure 29: Perturbation of a Lefschetz node singularity.

Definition 16 A trisection of a 4–manifold X with boundary is a splitting
X = X1 ∪X2 ∪X3 and integers 0 ≤ k, b, n, g with n ≤ k ≤ g such that each
Xi is diffeomorphic to Zk,b,n via a diffeomorphism φi : Xi → Zk,b,n for which

φi(Xi ∩Xi+1) = Y +
k,b,n,g

and
φi(Xi ∩Xi−1) = Y −

k,b,n,g

We leave the proof of the following to the reader:

Lemma 17 A trisection of a 4–manifold X with non-empty boundary restricts
to the boundary M3 = ∂X as either a fibration over S1 (when b = 0) or an
open book decomposition (when b 6= 0). In the first case, Xi ∩ ∂X is the
inverse image under the fibration of [2πi/3, 2π(i + 1)/3] ⊂ S1 . In the second
case, Xi ∩ ∂X is the union of this inverse image and the binding.

Remark 18 Lefschetz fibrations over B2 can be perturbed to give examples
of trisections in this relative setting. Assume that f : X4 → B2 is a bundle
with fiber Fk,b except for exceptional fibers which have nodes where in local
coordinates (z, w) f is given by f(z, w) = zw . Lekili showed in [6] that the
map f could be locally perturbed so that the node is replaced by three 1–folds
in the shape of a hyperbolic triangle, as in Figure 29. We need such a triangle
to go around the central fiber of our trisection, so we move a cusp up to and
past the central fiber. This ups the genus of the central fiber by one. Now it is
easy to trisect X for the only folds are these triangles.

Remark 19 Given two 4–manifolds X and X ′ , with diffeomorphic boundary,
both trisected with b = 0, and with a gluing map ∂X → −∂X ′ respecting
trisections, gluing along the boundary does not imply produce a trisection of
the closed manifold X ∪ X ′ . However, we naturally have six pieces which
fit together like the faces of a cube. From this, the technique described in
Section 2 for producing a trisection of a bundle over S2 can be generalized to
give a natural trisection of X ∪X ′ .
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Theorem 20 Given a 4–manifold X with an open book decomposition or
fibration over S1 on ∂X , there exists a trisection of X restricting to ∂X as
the given fibration or open book.

Proof Use the given boundary data to see X as a cobordism from F× [0, 1] to
F×[0, 1], where F is either the fiber or the page. Using a handle decomposition
of X compatible with this cobordism structure, repeat the second version of
the proof of Theorem 4.

Stabilization of trisections makes sense in the relative case, since it takes place
inside a ball in the interior of X .

Theorem 21 Any two trisections of a fixed 4–manifold X which agree on ∂X
are isotopic after stabilizations.

Proof Again, the proof of Theorem 11 works verbatim in this case, once we
fix the appropriate cobordism structure on X . The key idea is that Cerf theory
works perfectly well when we fix behavior on compact subsets.
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