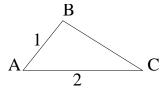

1.	1. Consider a parallelogram with one side of length 1 and another side of length 2. What is the largest possible value for the area of such a parallelogram?			
	A.	1		
	В.	2		
	C.	3		
	D.	4		
	Ε.	5		
2.	2. All three vertices of triangle ABC lie on a circle, and side AB passes through the center of that circle. What is angle C ?			
	Α.	30 degrees;		
	В.	45 degrees;		
	C.	60 degrees;		
	D.	90 degrees;		
	E .	Cannot be determined from the given information.		
3.	3. Professors SMITH, JONES, BROWN and DAVIS are giving a student Ms. As a qualifying exam on combinatorics. The professors are sitting in a row of four As the co-chairs of the examination committee, professors SMITH and BROW to sit next to each other. Prof. DAVIS, as the adviser of Ms. AGNESI, is requisit next to the exam co-chairs. In how many ways can the professors sit?			
	Α.	24		
	В.			
	C.	8		
	D.	6		
	E.	3		


4. If $\triangle ABC$ is a right triangle as shown in the graph. What is $(\tan B) \times (\tan C)$?

- **A.** 1
- **B.** $\frac{\sqrt{2}}{2}$
- $\mathbf{C.} \quad \frac{\sqrt{3}}{2}$
- **D.** 0
- E. There's not enough information to decide.
- 5. Suppose that $f(x) = x^3 + ax^2 + bx + c$, $p \neq q$, and f(p) = f(q) = 0. What is f(0)?
 - **A.** p+q
 - **B.** -(p+q)
 - **C.** *pq*
 - \mathbf{D} . -pq
 - E. Cannot be determined from the given information.
- 6. A positive integer is said to be a prime number if the only positive integers which divide it are 1 and itself. For example, 7 is a prime number, but 15 is not. Which one of the following is a prime number:
 - **A.** 9999
 - **B.** $5^4 1$
 - C. $2^4 1$
 - **D.** $2^{2^3} + 1$
 - **E.** $7^5 + 1$

7.	The	slope of the line tangent to the circle $x^2 + y^2 = 1$ at the point $(3/5, 4/5)$ is:
	Α.	0
	В.	3/4
	C.	-3/4
	D.	4/3
	E.	-4/3
8.	The	area of a triangle with side lengths 1, 2, and 4 is
	Α.	1
	В.	2
	C.	3
	D.	$2\sqrt{2}$
	E.	There is no such triangle.
9.		fair dice, with sides labeled $1, 2, 3, 4, 5$ and 6 , are rolled. What is the probability the difference of the two numbers rolled is even:
	Α.	1
	В.	1/2
	C.	1/3
	D.	1/4
	E.	It is impossible to compute the probability.
10.	How	many integers between 1 and 100 are divisible by both 6 and 10?
	A.	0
	В.	3
	C.	10
	D.	16
	$\mathbf{E}.$	50

11. The area of triangle $\triangle ABC$ is $\sqrt{2}$. Side AB has length 1 and side AC has length 2. What is angle A?

- $\mathbf{A.} \quad 15^{\circ}$
- **B.** 30°
- **C.** $30^{\circ} \text{ or } 60^{\circ}$
- **D.** 45° or 135°
- **E.** 60°

This problem is not correctly stated. Please ignore it.

- 12. Six distinct points are marked on a circle. How many distinct convex polygons of three or more sides can be drawn using some or all of the six points as vertices.
 - **A.** 64
 - **B.** 52
 - **C.** 50
 - **D.** 44
 - **E.** 42
- 13. The equation $x^3 + \frac{1}{2}x^2 \frac{1}{3}x \frac{1}{6} = 0$ has three distinct solutions and one of them is $\frac{\sqrt{3}}{3}$. What is the sum of the other two solutions?
 - **A.** $-\frac{1}{2} \frac{\sqrt{3}}{3}$
 - **B.** $-\frac{1}{2}$
 - C. $\frac{1}{2} \frac{\sqrt{3}}{3}$
 - **D.** $\frac{1}{2}$
 - **E.** $-\frac{1}{6} \frac{\sqrt{3}}{3}$

- 14. The radius of the circle $x^2 2x + y^2 4y = 4$ is:
 - **A.** 1
 - **B.** 2
 - **C.** 3
 - **D.** 4
 - **E.** That's not the equation of a circle.
- 15. For a positive integer n, we define n-factorial as $n! = 1 \cdot 2 \cdot 3 \cdot \cdots n$. For example, 4! = 24. The last digit of $1! + 2! + 3! + \cdots + 50!$ is
 - **A.** 0
 - **B.** 1
 - **C.** 2
 - **D.** 3
 - **E.** 4
- 16. The area of an equilateral triangle with side length 1 is
 - **A.** 1/2
 - **B.** 1
 - C. $\sqrt{2}$
 - **D.** $\sqrt{3}/2$
 - **E.** $\sqrt{3}/4$
- 17. If $\sin x \cos x = 0.5$, then what is $\sin 2x$?
 - **A.** 0.5
 - **B.** 0.75
 - **C.** 0.25
 - **D.** -0.5
 - **E.** -0.25

- 18. In this problem, the angle in $\sin 1$, $\cos 1$, $\tan 1$ and $\cot 1$ is measured in radians. 1 rad = $1 \cdot \frac{180^{\circ}}{\pi} \approx 57.2958^{\circ}$. Which of the following numbers is the largest? ($\cot 1 = \frac{\cos 1}{\sin 1}$)
 - **A.** 1
 - **B.** $\sin 1$
 - C. $\cos 1$
 - \mathbf{D} . $\tan 1$
 - \mathbf{E} . $\cot 1$
- 19. Which of the following numbers is the smallest?
 - **A.** $\sqrt{7} \sqrt{5}$
 - **B.** $\sqrt{5} \sqrt{3}$
 - C. $\frac{2}{2+\sqrt{3}}$
 - **D.** $\frac{2}{2+\sqrt{5}}$
 - E. $\frac{2}{2+\sqrt{7}}$
- 20. Consider a regular polygon with 100,000 sides. If the sum of the lengths of the sides is 6.28, then the area is best approximated by
 - **A.** 1
 - **B.** 2
 - **C.** 3.14
 - **D.** 6.28
 - **E.** 12.56