
1. Find all integers of the form n4 + 4 which are prime numbers.

Hint: n4+? + 4 is a perfect square.

Solution (Note: Although not stated, it has been tactically assumed that n is an
integer. After all, if n is allowed to be any real numbers, then any prime p ≥ 5 can be
expressed as n4 + 4.)

Notice that
n4 + 4 = (n4 + 4n2 + 4) − 4n2

= (n2 + 2)2 − (2|n|)2

= (n2 + 2 − 2|n|)(n2 + 2 + 2|n|)
Clearly for all |n| > 1, both n2 + 2 − 2|n| and n2 + 2 + 2|n| are integers greater than
1. In other words, when |n| > 1, the number n4 + 4 can not be a prime number.

The only choices left are n = −1, 0, 1. We have

(−1)4 + 4 = 5 is a prime number,

04 + 4 = 4 is not a prime number,

14 + 4 = 5 is a prime number.

Hence, 5 is the only integer of the form n4 + 4 which is a prime number.
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2. Suppose that S is a subset of the plane, like the shaded area in the figure below, and
the area of S is greater than 1. Show that there exist two points p = (x1, y1) and
q = (x2, y3) in S such that x1 − x2 and y1 − y2 are both integers.

Hint: Cut the plane into a grid of squares of side length 1, as in the figure. Now
imagine stacking the pieces on top of each other. . .

Solution (There is a typo in the problem. Point q should have coordinate (x2, y2)
instead of (x2, y3).)

In the grid of squares, any two points, which belong to different squares but are located
at the same geometric position in their own squares, must have integer differences in
their x- and y-coordinates.

When stacking the 1 × 1 squares on top of each other, if the shaded area (subset S)
overlaps, the overlapping part must be points located at the same geometric position
in different squares. According to the previous analysis, the differences in their x- and
y-coordinates are both integers. Now the only thing left is to show that the shaded
area (subset S) must overlap in the stacking process.

This is true because the total area of S is greater than 1. If we try to cut, stack and
fit it into a 1 × 1 square whose area is only 1, there must be some overlap.
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3. The square @ABCD has sides of length 2. Point E lies on the center of edge AB.
Point F is the intersection of lines AC and DE. Line FG is parallel to line AB. Find
the area of triangle ∆EFG.

A B

CD

E

F G

Solution There are many different methods for solving this problem. Here we only
give one of them.

Clearly, AE has length 1. Triangle ∆ACE has base 1 and height 2, hence its area is 1.

Triangle ∆AEF and ∆CDF are similar triangles. Because AE has half the length of
CD, we know that AF must have half the length of CF . Also because FG is parallel
to AE, consequently EG must have half the length of CG.

Now consider ∆ACE with AC as its base. By comparing the ratio of AF and CF ,
we conclude that the area of ∆CFE is 2/3 of the area of ∆ACE. Hence the area of
∆CFE is 2/3.

Finally, consider ∆CFE with EC as its base. By comparing the ratio of EG and CG,
we conclude that the area of ∆EFG is 1/3 of the area of ∆CFE. Therefore, the area
of ∆EFG is (1/3) × (2/3) = 2/9.
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4. Let

x =
3

√

1 +
3

√

1 +
3

√

1 + 3
√

1 + · · ·

Show that 1 < x < 2.

Solution Notice that the equation may be rewritten as

x = 3
√

1 + x.

or x3 = 1 + x. This implies that x3 − x = 1.

Now, since x =
3

√

1 +
3

√

1 + 3

√

1 + 3
√

1 + · · ·, clearly x > 3
√

1 = 1.

Suppose x ≥ 2, then x3 − x = x(x− 1)(x + 1) ≥ 2 · 1 · 3 = 6. So it is not possible that
x3 − x = 1. Hence x ≥ 2 is not possible.

Putting both together, we have 1 < x < 2.

(To be mathematically strict, one should prove that the limit of the infinite sequence
exists. However, this is beyond the scope of high school mathematics. So here we simply
assume the limit exists.)
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5. When a small circle of radius r rolls around (no sliding) the inside of a large circle of
radius R, the trace of a point on the small circle is called a hypocycloid. We assume
that both R and r are integers.

When the ratio R/r is an integer, P will return to its starting position after one full
cycle of rolling around the large circle. In the diagrams below, we illustrate the trace
of P with R/r = 3, 4, 5, 6, in thick dark curves.

P
R/r = 3

P

R/r = 4

P

R/r = 5

P

R/r = 6

When R/r is not an integer, P will not return to its starting position after one full
rolling cycle. However, we can keep rotating the small circle and the trace of P is
illustrated in below.

P
Starting position

P

After one cycle

P

After several cycles

In this case, will P ever be able to go back to its starting position? If your answer is
no, explain why. If your answer is yes, calculate the total number of full cycles (around
the large circle) needed for P to go back to its starting position.

Solution Yes, P will go back to its original position after n full cycles around the
large circle if the total distance travelled, n(2πR), is a multiple of the inner circle’s
circumference 2πr. In other words, P will go back to its original position after n full
cycles if

n(2πR)

2πr
= n

R

r

is an integer. Since R and r are integers, let d = gcd(R, r) be the greatest common
divisor of R and r, then

n
R

r
= n

R/d

r/d

is an integer if n is a multiple of r/d.
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