MATH 4143-001/5043-001, FALL 2012, SYLLABUS

FACULTY: WEIPING LI
OFFICE: MS 526, PHONE \#: (405)-744-5698

WWW: http://www.math.okstate.edu/~wli/
Fax number: 405-744-8275
Main office of Math Department 401 MS, phone number: 405-744-5688.

1. Basic Course Information

Prerequisites: Math 4013 and Math 4023.
Textbooks: Principles of Mathematical Analysis by Walter Rudin, 3rd Edition.
Content: Chapter 1-6 of the text. This will be a rigorous treatment of the real and complex number systems, the metric and topological properties, sequences and series, differential calculus in one and several variables.

Class Time: MWF 10:30am - 11:20am Start on Monday August. 20, 2003.
Class Room: MSCS 422.
Office Hours: MWF 1:30pm $-2: 20 \mathrm{pm}$. Highly recommended to take full and consistent advantage on my office hours.

2. Exams, Homework and Grade

Your grades will be determined by the scores on one middle-term fifty-minute tests (each worth $100 \mathrm{pts})$, Homework is worth 200pts and the final exam is worth 200 pts .

A as 450-500; B as 400-449; C as $350-399 ; \mathbf{D}$ as $300-349$; \mathbf{F} as 0-299.
Middle-term Exam: October 15, 2012

FINAL EXAM: Wednesday, December 14, 10:00am - 11:50am at MSCS 422.

3. Homework

Homework assignments will be updated in D2L and due date will be announced in D2L as well.
(1) HW 1: Page 21, 1 and page $22,2,4,5,6,8$.
(2) HW 2 : Page 22, 9, 10, 11, 14, 18, 19.
(3) HW 3 : Page 43, 2, 3, 5, 6, 7, 8.
(4) HW 4 : Page 43-Page 44, 9, 10, 12, 13, 14, 15.
(5) HW 5 : Page 44-45, 17, 18, 19, 20, 22, 23, 29.
(6) HW 6 : Page 78, 3, 4, 5, 7, 8, and

- Let x be an irrational number in $(0,1)$. Define $q_{1}=\left[\frac{1}{x}\right]$ be the largest integer of $\frac{1}{x}$ and $r_{1}=\frac{1}{x}-q_{1}$. Let $r_{0}=x$, one can define q_{n}, r_{n} by the following

$$
\frac{1}{r_{n}}=q_{n+1}+r_{n+1}, \quad n \geq 0, \quad q_{n+1}=\left[\frac{1}{r_{n}}\right]
$$

(a) Show the algorithm cannot stop at finite steps.
(b) Let x_{n} be the number

$$
x_{n}=\frac{1}{q_{1}+\frac{1}{q_{2}+\frac{1}{\cdots+\frac{1}{q_{n-1}+\frac{1}{q_{n}}}}}} .
$$

Show that $\left|x-x_{n}\right| \leq \frac{1}{q_{n}}$ for $n \geq 1$.
(c) If N of the q_{k} 's are bounded by c, show that

$$
\left|x-x_{n}\right| \leq\left(\frac{c+1}{c+2}\right)^{N}
$$

for all but finitely many n. Note that $x \leq\left(q_{2}+1\right) /\left(q_{2}+2\right)$.
(d) Show that for the infinite many rational numbers $x_{n}, \lim _{n \rightarrow \infty} x_{n}=x$ (either $q_{n} \rightarrow \infty$ or q_{n} not go to ∞).
(7) HW 7: Page 79-81, 11, 12, 13, 17, 19, 20,

- Let $\left\{a_{n}\right\}$ be a sequence of real numbers which satisfies

$$
a_{m}+a_{n}-1 \leq a_{m+n} \leq a_{m}+a_{n}+1
$$

for all n, m natural numbers. Prove that (a) $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}$ exists if it is bounded; and (b) Show that for all n and $\alpha=\lim _{n \rightarrow \infty} \frac{a_{n}}{n}$, one has

$$
n \alpha-1 \leq a_{n} \leq n \alpha+1
$$

(8) HW 8 : Page 98, 1, 2, 3, 5, 6, 16, 18, 20.
(9) HW 9 : page $99,9,11,13,14,17,22,23$.
(10) HW 10: page $114,3,4,5,6,8,9,11,13$.
(11) HW 11: page $115,14,15,16,17,19,21,22,25$.
(12) HW 12 : page $138,3,4,5,6,10,11,12,15$.

Department of Mathematics, Oklahoma State University
Stillwater, Oklahoma 74078-0613
E-mail address: wli@math.okstate.edu

