Math 4263 - Partial Differential Equations

Syllabus - Summer 2011

Instructor:	Dr. Birne Binegar		
	430 Mathematical Sciences		
	Tel. 744-5793		
	Email: binegar@math.okstate.edu		
	Office Hours: TTh, 3:45 - 4:30, 336 North Hall, OSU Tulsa		
Lectures:	TTh , 4:30 - 7:10 , NCB 212, OSU Tulsa		
Course URL:	www.math.okstate.edu/~binegar/ $4263/4263$.html		
Text:	Partial Differential Equations: An Introduction,		
	by Walter A. Strauss,		
	John Wiley & Sons (2008) ISBN: 97800470-0546-7		
Prerequisites:	Ordinary Differential Equations and Vector Calculus		
Course Objectives:	The theory of partial differential equations will be developed by		
	a systematic study of relatively simple yet important examples.		
	Special emphasis will be placed on techniques of solution and		
	boundary value problems.		
Homework:	Homework will be assigned daily , and it is expected that a		
	student work out a day's assignment before the next lecture.		
	All the homework assigned during a given week will be due		
	at the beginning of the first class of the following week.		
Examinations:	There will be one midterm examination worth 100 pts		
	and one final examination worth 175 pts.		
Grades:	Grades will be determined exclusively from homework,		
	midterm and final exam score	s.	
	1 Midterm Examination	100 possible pts.	
	Homework	25 possible pts.	
	Final Examination	175 possible pts.	
		300 possible pts.	

Letter grades will be assigned as follows:

A:	270	-	300 pts.
B:	240	-	$269~\mathrm{pts.}$
C:	210	-	$239\ \mathrm{pts.}$
D:	180	-	$209~\mathrm{pts.}$
F:	0	-	$179~\mathrm{pts.}$

Math 4263: Intro to PDEs Sequence of Topics

- 1. First Order Linear PDEs
- 2. Characteristics and First Order Equations
- 3. Second Order Linear PDEs
- 4. The Wave Equation
- 5. The Wave Equation
- 6. Reflections off a Boundary
- 7. The Wave Equation with a Source
- 8. The Heat Equation
- 9. The Heat Equation
- 10. Maximum Principle and Uniquenes
- 11. Separation of Variables and Fourier Series
- 12. Fourier Series, Cont'd
- 13. Midterm
- 14. Sturm-Liouville Theory
- 15. Sturm-Liouville
- 16. Examples
- 17. Laplace's Equation
- 18. Laplace's Equation on a Disc
- 19. Distributions
- 20. Green's Identities and Green's Functions
- 21. Numerical Methods Divided Differences
- 22. Finite Element Method
- 23. Laplace Transform Method