Heegaard Floer Homology Exercise Set #4

Exercise 1: Show that

$$\widehat{HF}(\stackrel{n}{\#}(S^1 \times S^2)) \cong \bigoplus_{k=0}^n A_k$$

where

$$A_k := \mathbb{F}^{\binom{n}{k}}$$

with the following relative grading. For all pairs $0 \le k, l \le n$, given $x \in A_k$ and $y \in A_l$,

$$gr(x,y) = k - l.$$

Exercise 2:

- 1. Show that if (Y_1, Y_2, Y_3) is a triad than so are (Y_2, Y_3, Y_1) and (Y_3, Y_1, Y_2) .
- 2. Let $|H_1(Y; \mathbf{Z})|$ be the cardinality of $H_1(Y; \mathbf{Z})$ if it's finite and 0 if $H_1(Y; \mathbf{Z})$ is infinite. Show that if (Y_1, Y_2, Y_3) is a triad then in some cyclic order

$$|H_1(Y_1; \mathbf{Z})| + |H_1(Y_2; \mathbf{Z})| = |H_1(Y_3; \mathbf{Z})|.$$

Show that in that order, if Y_1 and Y_2 are L-spaces that so is Y_3 . (Hint: Given a rational homology sphere Y for each $s \in Spin^c(Y)$, $\widehat{HF}(Y,s)$ is nontrivial.)

- 3. Let K be a null-homologous knot in a 3-manifold Y. Show that there is a unique longitude λ null-homologous in $Y \nu(K)$ where $\nu(K)$ is a neighborhood of K. This longitude is called the *Seifert longitude* of K in Y.
- 4. Let K be a knot is S^3 , and let λ be the Seifert longitude of K in S^3 . Let p and q be co-prime integers (or (p,q) is (1,0) or (0,1)). Denote surgery of S^3 along K with framing $q\lambda + p\mu$ by $S^3_{\frac{p}{q}}(K)$. Let p_1, p_2, q_1 , and q_2 be integers such that $p_1q_2 p_2q_1 = 1$. Let $p_3 = p_1 + p_2$ and $q_3 = q_1 + q_2$. Show that $(S^3_{\frac{p_1}{q_1}}(K), S^3_{\frac{p_2}{q_2}}(K), S^3_{\frac{p_3}{q_3}}(K))$ is a triad. In particular, for any integer n, $(S^3, S^3_n(K), S^3_{n+1}(K))$ is a triad.
- 5. Show that for a knot K in S^3 , if for some rational r > 0, $S_r^3(K)$ is an L-space then $S_n^3(K)$ is an L-space for all integers n > r.

Exercise 3: Let L be a link is S^3 . Denote the unique branched double cover of S^3 branched along L by $\Sigma(L)$. Select a crossing in a diagram of L and let L_0 and L_1 be the links represented by resolving the crossings as in Figure 1. Show that $(\Sigma(L), \Sigma(L_0), \Sigma(L_1))$ is a triad.

Figure 1: Resolutions of a crossing of L