Exercise Set #5

Exercise 1: Given an integer s, find a link descriptions of $\Sigma(2, 2s-1, 2s+1)$.

Exercise 2: Let Σ be the Brieskorn homology sphere $\Sigma(2,7,13)$.

- a) Prove that $\mu(\Sigma) = 0$.
- b) Use Furuta's theorem to prove that Σ is not homology cobordant to zero.
- c) Prove that Σ has an infinite order in the homology cobordism group.

Exercise 3: A knot K in $S^3 = \partial D^4$ is *slice* if there is a disk $D \subset D^4$ such that $\partial D = K$. Prove that, for any integer n, the integral homology sphere obtained by (1/n)-surgery on a slice knot in S^3 is homology cobordant to zero.

Exercise 4: Prove that if a homology 3-sphere Σ can be embedded in \mathbb{R}^4 then $\mu(\Sigma) = 0$. In particular, the Poincaré homology sphere cannot be embedded in \mathbb{R}^4 .

Exercise 5: Prove that any Seifert homology sphere $\Sigma(a_1, \ldots, a_n)$ with even a_1 can be obtained by a surgery according to an even-weighted star-shaped graph.

Exercise 6: Let $K_1 \subset \Sigma_1$ and $K_2 \subset \Sigma_2$ be oriented knots in oriented homology spheres, M_{K_1} and M_{K_2} their exteriors, and (m_1, l_1) and (m_2, l_2) the canonical meridian-longitude pairs on ∂M_{K_1} and ∂M_{K_2} , respectively. By the *splice* of Σ_1 and Σ_2 along K_1 and K_2 we will mean the manifold $\Sigma = M_{K_1} \cup M_{K_2}$ obtained by gluing M_{K_1} and M_{K_2} along their boundaries by an orientation reversing homeomorphism matching m_1 to l_2 and l_1 to m_2 .

- a) Prove that Σ is a homology sphere.
- b) Define a trivial knot in a homology sphere Σ as an unknot in a copy of $D^3 \subset \Sigma$. Prove that the splice of Σ_1 and Σ_2 along trivial knots is $\Sigma_1 \# \Sigma_2$.
- c) Let homology spheres Σ'_1 and Σ'_2 be obtained from Σ_1 and Σ_2 by (-1)-surgery on, respectively, K_1 and K_2 . Let $K_1^* \subset \Sigma'_1$ and $K_2^* \subset \Sigma'_2$ be the images of the canonical longitudes l_1 and l_2 . Prove that the splice of Σ_1 and Σ_2 along K_1 and K_2 is homeomorphic to the homology sphere obtained from $\Sigma'_1 \# \Sigma'_2$ by (+1)-surgery on the knot $K_1^* \# K_2^*$.

Exercise 7: Let Σ be the splice of homology spheres Σ_1 and Σ_2 along knots K_1 and K_2 . Prove that $\mu(\Sigma) = \mu(\Sigma_1) + \mu(\Sigma_2)$.