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Introduction

Heegaard Floer homology, defined by Ozsváth-Szabo [OS04d], and knot Floer
homology, defined by Ozsváth-Szabó [OS04b] and independently Rasmussen [Ras03],
are invariants of 3-manifolds and knots inside of them. These notes aim to provide
an overview of these invariants and the relationship between them.

We will describe our manifolds and knots via Heegaard diagrams, which we define
in Section 1. From such diagrams, we will construct chain complexes for 3-manifolds,
respectively knots, in Section 2, respectively Section 3, whose chain homotopy type
(and in particular, homology) is independent of the choice of Heegaard diagram.
Moreover, from the knot invariant associated to a knot K in S3, one can compute
the 3-manifold invariant for any Dehn surgery along K; we discuss this relationship
in the case of integral surgery in Section 4.

1. Heegaard splittings and diagrams

1.1. Heegaard splittings. Our goal is to define an invariant of closed 3-manifolds
and knots inside of them. In order to do this, we will need a way to describe our
manifolds and knots. We will do this using Heegaard diagrams. Throughout, we will
assume that all of our 3-manifolds are closed and oriented. Much of what follows
comes from [Sav99, Lecture 1] and [OS06b, Sections 2 and 3].

Definition 1.1. A handlebody of genus g is a closed regular neighborhood of a
wedge of g circles in R3.

Definition 1.2. Let Y be a 3-manifold. A Heegaard splitting of Y is a decomposition
of Y = H1 ∪f H2 where H1, H2 are handlebodies and f is an orientation reversing
homeomorphism from ∂H1 to ∂H2. The genus of the Heegaard splitting is the genus
of the surface ∂H1 or equivalently ∂H2.

Example 1.3. Note that S3 = B3 ∪B3. This is a genus 0 Heegaard splitting of S3.

Example 1.4. Consider S3 as the 1-point compactification of R3. Consider the circle
consisting of the z-axis and the point at infinity. A regular neighborhood of this
union is a handlebody H1 of genus 1. The complement of H1 is also a handlebody
of genus 1. Together, these two handlebodies form a genus 1 Heegaard splitting of
S3.

Theorem 1.5. Any closed, orientable 3-manifold Y admits a Heegaard splitting.
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2 J. HOM

Proof. Consider a triangulation of Y . Let H1 be a closed regular neighborhood of
the 1-skeleton of the triangulation; since H1 is a neighborhood of a graph, it is a
handlebody. The complement H2 = Y − H1 is also a handlebody; namely it is a
neighborhood of the dual 1-skeleton, that is, the graph whose vertices are the centers
of the tetrahedra and whose edges are segments perpendicular to the faces of the
tetrahedra. �

Remark 1.6. Alternatively, a self-indexing Morse function on Y gives rise to a Hee-
gaard splitting of Y ; see [OS06b, Section 3], in particular, Exercise 3.5.

Definition 1.7. Two Heegaard splittings Y = H1 ∪f H2 and Y = H ′1 ∪f ′ H ′2 of Y
are homeomorphic if there exists a homeomorphism φ : Y → Y taking Hi to H ′i.

Remark 1.8. One may also consider the following stricter notion of equivalence: two
Heegaard splittings Y = H1 ∪f H2 and Y = H ′1 ∪f ′ H ′2 of Y are isotopic if there
exists a map ψ : Y × [0, 1]→ Y such that

(1) ψ|Y×{0} = idY ,
(2) ψ|Y×t is a homeomorphism for all t,
(3) ψ|Y×{1} sends Hi to H ′i.

Note that if Y = H1∪fH2 and Y = H ′1∪f ′H ′2 are isotopic, then they are homeomor-
phic (via ψ|Y×{1}). The converse is false; indeed, the homeomorphism φ : Y → Y
need not be isotopic to the identity.

Definition 1.9. Let Y = H1 ∪f H2 be a genus g Heegaard splitting of Y . A
stablization of Y = H ′1 ∪f ′ H ′2 is the genus g + 1 Heegaard splitting of Y where H ′1
consists of H1 together with a neighborhood N of a properly embedded unknotted
arc γ in H2, and H ′2 consists of H2 −N .

Exercise 1.10. Prove that the homeomorphism type (in fact, isotopy type) of a
stabilization of Y = H1 ∪f H2 is independent of the choice of γ.

The following theorem of Reidemeister and Singer highlights the importance of
stabilizations.

Theorem 1.11 ([Rei33, Sin33]). Any two Heegaard splittings of Y become isotopic
after sufficiently many stablizations.

1.2. Heegaard diagrams. We will describe a Heegaard splitting via a Heegaard
diagram H, as defined below.

Definition 1.12. Let H be a handlebody of genus g. A set of attaching circles for
H is a set {γ1, . . . , γg} of simple closed curves in Σ = ∂H such that

(1) the curves are pairwise disjoint,
(2) Σ− γ1 − · · · − γg is connected,
(3) each γi bounds a disk in H.

Exercise 1.13. Show that Σ− γ1 − · · · − γg is connected if and only if [γ1], . . . , [γg]
are linearly independent in H1(Σ;Z).

See Figure 1 for an example of a set of attaching circles.

Definition 1.14. A Heegaard diagram compatible with Y = H1 ∪f H2 is a triple
H = (Σ,α,β) such that



HEEGAARD FLOER HOMOLOGY 3

Figure 1. A set of attaching circles for the “obvious” handlebody
in R3 bounded by Σ.

(1) Σ is closed oriented surface of genus g,
(2) α = {α1, . . . , αg} is a set of attaching circles for H1,
(3) β = {β1, . . . , βg} is a set of attaching circles for H2.

We call (Σ,α,β) a Heegaard diagram for Y .

See Figure 2 for examples of Heegaard diagrams for RP 3. (Another example of a
Heegaard diagram is given in Figure 8 below.)

Figure 2. Left, a Heegaard diagram for RP 3. Right, a stabilization.

Given a Heegaard diagram (Σ,α,β) for Y , we can build a 3-manifold as follows.
Thicken Σ to Σ× [0, 1]. Attach thickened disks along αi×{0}, 1 ≤ i ≤ g, and along
βi × {1}, 1 ≤ i ≤ g.

Exercise 1.15. Verify that since α and β are sets of attaching circles, the boundary
of the resulting 3-manifold is homeomorphic to S2 t S2.

Now fill in each of these boundary components with a copy of B3; there is a unique
way to do so, up to isotopy. The resulting 3-manifold is homeomorphic to Y .

Exercise 1.16. Show that H1(Y,Z) ∼= H1(Σ;Z)/〈[α1], . . . [αg], [β1], . . . , [βg]〉.

Exercise 1.17. Let H = (Σ,α,β) be a Heegaard diagram for Y . Compute H1(Y ;Z)
from H as follows. Choose an order and orientation on the α- and β-circles and form
the matrix M = (Mij) where Mij is the algebraic intersection number between the

ith α-circle and the jth β-circle. Show that M is a presentation matrix for H1(Y ;Z).

We now consider three ways to alter a Heegaard diagram, called Heegaard moves:
isotopies, handleslides, and stabilizations/destabilizations. Isotopies and handleslides
do not change the genus of the Heegaard diagram, while stabilizations, respectively
destablizations, increase the genus by one, respectively decrease the genus by one.
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Let {γ1, . . . , γg} be a set of attaching circles for a handlebody H where ∂H = Σ.
The set {γ1, . . . , γg} is isotopic to {γ′1, . . . , γ′g} if there is a 1-parameter family of
disjoint simple closed curves starting at {γ1, . . . , γg} and ending at {γ′1, . . . , γ′g}.

A handleslide of, say, γ1 over γ2 produces a new set of attaching circles {γ′1, γ2, . . . , γg}
where γ′1 is any simple closed curve disjoint from γ1, . . . , γg such that γ′1, γ1, and γ2
cobound an embedded pair of pants in Σ− γ3 − · · · − γg. See Figure 3.

γ′1

γ1 γ2

Figure 3. A handleslide.

Here is another way to think of a handleslide. Suppose that γ1 and γ2 can be
connected by an arc δ in Σ− γ3 − · · · − γg. Let γ′1 be the connected sum of γ1 with
a parallel copy of γ2, where the connected sum is taken along a neigborhood of δ.
See Figure 4.

Exercise 1.18. Prove that these two descriptions of handleslides agree (up to iso-
topy).

δ

γ1 γ2 γ′1 γ2

Figure 4. Another way to view a handleslide.

A stabilization of a Heegaard diagram (Σ,α,β) results in a Heegaard diagram
(Σ′,α′,β′) where

(1) Σ′ = Σ#T 2, where T 2 = S1 × S1,
(2) α′ = α∪ {αg+1} and β′ = β ∪ {βg+1}, where αg+1 and βg+1 are two simple

closed curves supported in T 2 intersecting transversally in a single point.

We say that (Σ,α,β) is a destablilization of (Σ′,α′,β′).

Exercise 1.19. Show that a stabilization of a Heegaard diagram corresponds to a
stabilization of the corresponding Heegaard splitting.
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We have the following standard fact about Heegaard diagrams (see, for example,
[OS04d, Proposition 2.2]).

Theorem 1.20. Let (Σ,α,β) and (Σ′,α′,β′) be two Heegaard diagrams for Y .
Then after applying a sequence of isotopies, handleslides, and stabilizations to each
of them, the two diagrams become homeomorphic (i.e., there is a homeomorphism
Σ→ Σ′ taking α to α′ and β to β′, setwise).

We will be interested in pointed Heegaard diagrams, that is, tuples (Σ,α,β, w)
where w is a basepoint in Σ−α−β. We now consider pointed isotopies, where the
isotopies are not allowed to pass over w, and pointed handleslides, where w is not
allowed to be in the pair of pants involved in the handleslide. We have the following
upgraded version of Theorem 1.20.

Theorem 1.21 ([OS04d, Proposition 7.1]). Let (Σ,α,β, w) and (Σ′,α′,β′, w′) be
two pointed Heegaard diagrams for Y . Then after applying a sequence of pointed
isotopies, pointed handleslides, and stabilizations to each of them, the two diagrams
become homeomorphic.

1.3. Doubly pointed Heegaard diagrams. We will also be interested in describ-
ing knots inside of our 3-manifolds. For simplicity, we will focus on the case where
the ambient 3-manifold is S3.

Definition 1.22. A doubly pointed Heegaard diagram for a knot K ⊂ S3 is a tuple
(Σ,α,β, w, z), where w, z are basepoints in Σ−α− β, such that

(1) (Σ,α,β) is a Heegaard diagram for S3,
(2) K is the union of arcs a and b where a is an arc in Σ−α connecting w to z,

pushed slightly into H1 and b is an arc in Σ− β connecting z to w, pushed
slightly into H2.

See Figure 5 for an example of a doubly pointed Heegaard diagram for the left-
handed trefoil.

w

z

a

b

c

Figure 5. A doubly pointed Heegaard diagram for the left-handed
trefoil, −T2,3. (The labelled points a, b, and c will be used in Section
3.)

Given a knot diagram D for a knot K, one can obtain a doubly pointed Heegaard
diagram for K as follows. Suppose that D has c crossings. Forgetting the crossing
data of the diagram D yields an immersed curve C in the plane. The complement of
C is c+2 regions in the plane, one of which is unbounded. Let Σ be the boundary of
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a regular neighborhood of C in R3; note that Σ is a surface of genus c+ 1. For each
of the bounded regions in the complement of C, we put a β-circle on Σ. For each
crossing of D, we put an α-circle on Σ as in Figure 6. Lastly, we add an α-circle,
say αc+1, corresponding to a meridan of K. Place a w-basepoint on one side of
αc+1 and a z-basepoint on the other side. (Note that which side one choose for w
determines the orientation of K.) See Figure 7 for an example.

Figure 6. A knot crossing and the corresponding portion of the
associated doubly pointed Heegaard diagram.

w z

Figure 7. Another doubly pointed Heegaard diagram for the left-
handed trefoil, −T2,3.

Exercise 1.23. Show that the above construction yields a doubly pointed Heegaard
diagram for K ⊂ S3.

In the aforementioned construction, if we replace the circle αc+1 with an n-framed
longitude and remove the basepoint z, we obtain a pointed Heegaard diagram for
S3
n(K). See Figure 8 for an example.
We now consider doubly pointed isotopies, which are required to miss both w and

z, and doubly pointed handleslides, where neither w nor z are allowed to be in the
pair of pants involved in the handleslide.We have the following analog of Theorem
1.21.

Theorem 1.24 ([OS04b, Proposition 3.5]). Let (Σ,α,β, w, z) and (Σ′,α′,β′, w′, z′)
be two doubly pointed Heegaard diagrams for K ⊂ S3. Then after applying a sequence
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Figure 8. A Heegaard diagram for S3
+5(−T2,3).

of doubly pointed isotopies, doubly pointed handleslides, and stabilizations to each
of them, the two diagrams become homeomorphic.

Exercise 1.25. Find a sequence of doubly pointed Heegaard moves from Figure 7 to
Figure 5.

In Sections 2 and 3, we will define invariants of 3-manifolds and knots in S3. These
invariants will be defined in terms of pointed and doubly pointed Heegaard diagrams,
and invariance will follow from the fact that the invariants remain unchanged under
pointed and doubly pointed Heegaard moves.

We conclude this section with some additional exercises.

Exercise 1.26. Find a genus 1 doubly pointed Heegaard diagram for the figure eight
knot.

Exercise 1.27. Find a genus 1 doubly pointed Heegaard diagram for the torus knot
Tp,q.

Exercise 1.28. Let (Σ,α,β) be a Heegaard diagram for Y . What is the manifold
described by (−Σ,α,β)? By (Σ,β,α)?

Exercise 1.29. Let (Σ,α,β, w, z) be a Heegaard diagram for a knot K in S3. What
is the knot described by (Σ,α,β, z, w)? By (−Σ,β,α, z, w)?

2. Heegaard Floer homology

2.1. Overview. From a Heegaard diagram H for Y , we will build chain complexes

ĈF (H) and CF−(H) whose chain homotopy types are invariants of Y ; the former
is a finitely generated chain complex over F and the latter is a finitely generated
graded chain complex over F[U ]. Throughout, F denotes the field Z/2Z and U

is a formal variable of degree −2. We denote their homologies by ĤF (Y ) and
HF−(Y ) respectively; the former is a graded vector space over F and the latter is
a graded module over F[U ]. When discussing properties that apply to either flavor

of Heegaard Floer homology, will write HF ◦ rather than ĤF , HF−, HF+, or HF∞
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(the latter two of which are defined below). The material in this section draws from
[OS06b, Sections 4-8] and [OS04d, Sections 3 and 4].

For simplicity, we will consider the case where Y is a rational homology sphere.
The case b1(Y ) > 0 requires some additional admissibility assumptions on H; see
[OS04d, Section 4.2]. Before defining these invariants, we discuss certain aspects of
their formal structure.

The Heegaard Floer homology of Y splits as a direct sum over spinc structures
on Y :

HF ◦(Y ) =
⊕

s∈spinc(Y )

HF ◦(Y, s)

See [OS06b, Section 6] for a discussion of spinc structures in terms of homotopy
classes of non-vanishing vector fields. Note that spinc structures on Y are in (non-
canonical) bijection with elements in H2(Y ;Z). The above splitting on the level of
homology comes from a splitting on the chain level.

Both ĤF (Y ) and HF−(Y ) are finitely generated and graded. Finitely generated
graded vector spaces are simply a direct sum of graded copies of F. Finitely gen-
erated graded modules over a PID are also completely characterized. Since the
only homogenously graded polynomials in F[U ] are the monomials Un, any finitely
generated graded module over F[U ] is isomorphic to

(2.1)
⊕
i

F[U ](di) ⊕
⊕
j

F[U ](cj)/(U
nj ),

where F[U ](d) denotes the ring F[U ] where the element 1 has grading d.
Moreover, by [OS04c, Theorem 10.1], we have that for a rational homology sphere

Y , for all s ∈ spinc(Y ),

(2.2) HF−(Y, s) ∼= F[U ](d) ⊕
⊕
j

F[U ](cj)/U
nj ,

that is, there is exactly one free summand. We define the d-invariant of (Y, s) to be

d(Y, s) = max{gr(x) | x ∈ HF−(Y, s), UNx 6= 0 ∀ N > 0}.

The U -torsion part, denoted
⊕

j F[U ](cj)/U
nj above, is called HF red(Y, s). A ra-

tional homology sphere Y with HF red(Y, s) = 0 for all s ∈ spinc(Y ) is called an
L-space.

Remark 2.1. Different grading conventions exist in the literature. We have chosen
our grading convention so that HF−(S3) ∼= F[U ](0), as opposed to the perhaps more
common F[U ](−2). Our grading convention choice simplifies certain formulas, such
as the Künneth formula [OS04c, Theorem 1.5]:

CF−(Y1#Y2, s1#s2) ' CF−(Y1, s1)⊗F[U ] CF−(Y2, s2).

Note that our choice of grading convention also impacts the gradings on HF red(Y, s).

The chain complexes ĈF (H, s) and CF−(H, s) fit in the following U -equivariant
exact sequence:

0→ CF−(H, s) ·U−→ CF−(H, s)→ ĈF (H, s)→ 0,
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yielding the U -equivariant exact triangle:

ĤF (Y, s).

HF−(Y, s) HF−(Y, s)
·U

Remark 2.2. Equation (2.2) and the above exact triangle imply that for a rational

homology sphere Y , we have dim ĤF (Y ) ≥ |H1(Y ;Z)|; cf. Exercise 2.9. It follows

that dim ĤF (Y ) = |H1(Y ;Z)| if and only if Y is an L-space.

We may also consider HF∞(Y, s) = H∗(CF∞(Y, s) where

CF∞(Y, s) = CF−(Y, s)⊗F[U ] F[U,U−1].

Note that CF−(Y, s) ⊂ CF∞(Y, s) and define CF+(Y, s) to be the quotient

CF∞(Y, s)/CF−(Y, s).

We have the following short exact sequence:

0→ CF−(Y, s)→ CF∞(Y, s)→ CF+(Y, s)→ 0.

The above short exact sequence on the chain level induces the following U -equivariant
exact triangle:

HF+(Y, s).

HF−(Y, s) HF∞(Y, s)

Exercise 2.3. When Y is a rational homology sphere, HF∞(Y, s) ∼= F[U,U−1]. Use
this fact to give a description of HF+(Y, s) in terms of d(Y, s) and HF red(Y, s).

Remark 2.4. In light of Exercise 2.3, one may define HF red(Y, s) in terms of HF−(Y, s)
or HF+(Y, s); this choice also affects the grading of HF red(Y, s).

A smooth cobordism W from Y0 to Y1 (that is, a compact smooth 4-manifold W
with ∂W = −Y0 t Y1) induces a map from the Heegaard Floer homology of Y0 to
Y1. More specifically, given a spinc-structure t on W , we have a homomorphism

F ◦W,t : HF ◦(Y0, t|Y0)→ HF ◦(Y1, t|Y1),

which is defined via a handle decomposition of W (but does not depend on the choice
of handle decomposition). The cobordism map F ◦W,t has a grading shift depending

only on W and t. See [OS06a] for further details or [OS06c, Section 3.2] for an
expository overview.

Let Z be a compact 3-manifold with torus boundary, and γ0, γ1, and γ∞ three
simple closed curves in ∂Z such that

#(γ0 ∩ γ1) = #(γ1 ∩ γ∞) = #(γ∞ ∩ γ0) = −1.

Let Yi be the result of Dehn filling Z along γi for i = 0, 1,∞; that is, Yi is the union
of Z and a solid torus, where γi is meridian of the solid torus. Then by [OS04c,
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Theorem 9.12], we have an exact triangle

(2.3)

ĤF (Y∞)

ĤF (Y0) ĤF (Y1)
F̂0

F̂1F̂∞

where F̂i is the cobordism map associated to the corresponding 2-handle cobordism.
The analogous exact triangle also holds for HF+.

Remark 2.5. For the analogous exact triangle for the minus or infinity flavors, one
must work over the formal power series ring F[[U ]] and semi-infinite Laurent poly-
nomials F[[U,U−1] respectively; see [MO10, Section 2].

2.2. The Heegaard Floer chain complex. Let H = (Σ,α,β, w) be a pointed
Heegaard diagram for Y where Σ has genus g, and as usual α = {α1, . . . , αg} and
β = {β1, . . . , βg}. We further require that the α- and β-circles intersect transversally.

Consider the g-fold symmetric product

Symg(Σ) = Σ×g/Sg,

where Sg denotes the symmetric group on g-elements. Points in Symg(Σ) consist of
unordered g-tuples of points in Σ.

Exercise 2.6. Even though the action of Sg on Σ×g is not free, show that the quotient
Symg(Σ) is a smooth manifold. (Hint: Use the Fundamental Theorem of Algebra
to define a map between ordered and unordered g-tuples of complex numbers.)

We have two half-dimensional subspaces of Symg(Σ):

Tα = α1 × · · · × αg and Tβ = β1 × · · · × βg.

The chain complex ĈF (H) is freely generated over F by Tα∩Tβ, that is, intersection
points between Tα and Tβ. Note that points in Tα ∩ Tβ can be viewed in Σ as g-
tuples of intersection points between the α- and β-circles such that each α-circle,
respectively β-circle is used exactly once. We will also in interested in the following
subspace of Symg(Σ):

Vw = {w} × Symg−1(Σ).

The differential ∂ : ĈF (H) → ĈF (H) will count certain holomorphic disks in
Symg(Σ). Let D denote the unit disk in C, and let eα, respectively eβ, denote the
arc in ∂D with Re(z) ≥ 0, respectively Re(z) ≤ 0. A Whitney disk from x to y is a
continuous map φ : D→ Symg(Σ) such that

(1) φ(−i) = x,
(2) φ(i) = y,
(3) φ(eα) ⊂ Tα,
(4) φ(eβ) ⊂ Tβ.

See Figure 9. Let π2(x,y) denote the set of homotopy classes of Whitney disks from
x to y.

Exercise 2.7. There is a rather straightforward obstruction to the existence of a
Whitney disk from x to y.
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x

y

Figure 9. A schematic of a Whitney disk.

(1) Viewing x, respectively y, as an unordered g-tuple {x1, . . . , xg}, respectively
{y1, . . . , yg}, of points in α ∩ β, we may choose a collection of arcs a ⊂ α
such that ∂a = y1 + · · · + yg − x1 − · · · − xg and a collection of arcs b ⊂ β
such that ∂a = x1 + · · · + xg − y1 − · · · − yg. Then a − b is a 1-cycle in Σ.
Verify that the image of ε(x,y) = [a− b] ∈ H1(Y ;Z) is well-defined.

(2) Show that H1(Symg(Σ);Z) ∼= H1(Σ;Z). (Hint: See [OS04d, Lemma 2.6].)
Combined with Exercise 1.16, conclude that

H1(Symg(Σ);Z)

H1(Tα)⊕H1(Tβ;Z)
∼= H1(Y ;Z),

and that if ε(x,y) 6= 0 ∈ H1(Y ;Z), then there cannot exist a Whitney disk
in Symg(Σ) from x to y.

A choice of complex structure on Σ induces one on Symg(Σ). Given φ ∈ π2(x,y),
let M(φ) denote the moduli space of holomorphic representatives of φ. ([OS04d,
Proposition 3.9] ensures that, under generic perturbations, M(φ) is smooth.) The
expected dimension of M(φ) is called the Maslov index and denoted µ(φ). There
is an R-action on M(φ) coming from complex automorphisms of D that preserve i

and −i. Let M̂(φ) = M(φ)/R. If µ(φ) = 1, then M̂(φ) is a compact zero dimen-
sional manifold [OS04d, Theorem 3.18]. Let nw(φ) denote the algebraic intersection
between φ(D) and Vw.

We define a relative Z-grading, called the Maslov grading, on ĈF (H) as follows.
Let φ ∈ π2(x,y). Define

gr(x)− gr(y) = µ(φ)− 2nw(φ)

By [OS04d, Proposition 2.15], this relative grading is well-defined.
We may use the function ε defined in Exercise 2.7 to partition the intersection

points in Tα ∩ Tβ. These equivalence classes are in bijection with H1(Y ;Z) and
hence are in bijection with spinc(Y ); see [OS04d, Section 2.6] for more details. In

particular, we have a splitting ĈF (H) = ⊕s∈spinc(Y )ĈF (H, s).
The differential ∂ : ĈF (H, s)→ ĈF (H, s) is defined to be

∂x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1
nw(φ)=0

#M̂(φ) y.
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Note that in the first summation, it suffices to only consider y with ε(x,y) = 0; that

is, the differential respects the splitting ĈF (H) = ⊕s∈spinc(Y )ĈF (H, s). It follows
from the definition of the relative Maslov grading that the differential ∂ lowers

the Maslov grading by one. By [OS04d, Theorem 4.1], ∂2 = 0. Let ĤF (H, s) =

H∗(ĈF (H, s)).

Remark 2.8. We may define a relative Z/2Z grading on ĈF (H) that agrees with the
mod 2 reduction of the relative Maslov grading as follows; see [OS04c, Section 5].
Orient Tα and Tβ and define the relative Z/2Z grading between x,y ∈ Tα ∩ Tβ to
be the product of their local intersection numbers. (Here, we are identifying Z/2Z
with {±1} under multiplication.)

Exercise 2.9. Let H be a Heegaard diagam for a rational homology sphere Y . Use

Remark 2.8 to prove that χ(ĤF (H)) = ±|H1(Y ;Z)| and conclude that dim ĤF (H) ≥
|H1(Y ;Z)|.

We now define the chain complex CF−(H), which is freely generated over F[U ]
by Tα ∩ Tβ. Here, U is a formal variable with gr(U) = −2. We no longer require
that Whitney disks miss the basepoint (i.e., we remove the nw(φ) = 0 requirement),
and instead use the variable U to count the algebraic intersection number nw(φ) of
φ(D) and Vw:

∂x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

#M̂(φ)Unw(φ) y.

The definition of ∂ is extended to all elements of CF−(H) by F[U ]-linearity. As in

the case of ĈF , the chain complex CF−(H) splits over spinc(Y ), that is, CF−(H) =
⊕s∈spinc(Y )CF−(H, s). By [OS04d, Theorem 4.3], ∂2 = 0. Let HF−(H, s) =

H∗(CF−(H, s).

Theorem 2.10 ([OS04d, Theorem 1.1]). Let H be a pointed Heegaard diagram for

Y . Then the isomorphism type of ĤF (H, s) and HF−(H, s) is an invariant of Y
and s.

In order to prove the above theorem, one must show that ĤF (H, s) is independent of
the choice of Heegaard diagram, basepoint, and complex structure. Indeed, Ozsváth-
Szabó show that a Heegaard move induces a homotopy equivalence on the associated
chain complexes.

In [OS06a, Theorem 7.1], Ozsváth-Szabó prove that the relative Z-grading may be
lifted to a well-defined absolute Q-grading; this is done by considering a cobordism
from S3 to Y and considering holomorphic triangles associated to a Heegaard triple.

Exercise 2.11. Compute ĤF (L(p, q), s) and HF−(L(p, q), s) for all s ∈ spinc(L(p, q)).

In general, computing ĤF (Y ) and HF−(Y ) from a Heegaard diagram is not easy.

In Section 4, we will see how to compute ĤF (Y ) and HF−(Y ) when Y is surgery
on a knot in S3.

Exercise 2.12. Recall that pq± 1 surgery on the torus knot Tp,q is a lens space. Use

Exercise 2.11 and Equation (2.3) to compute ĤF (S3
n(Tp,q)) for n ≥ pq − 1.
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The following exercise will be of use in Section 4.

Exercise 2.13. Let H = (Σ,α,β, w) be a Heegaard diagram for Y . Let H′ =
(−Σ,β,α, w). Show that the chain complex CF−(H) is isomorphic to CF−(H′).

3. Knot Floer homology

3.1. Overview. Let K be a knot in S3. The simplest version of the knot invariant

is ĤFK (K), a bigraded vector space over the field F = Z/2Z, that is

ĤFK (K) =
⊕
m,s

ĤFKm(K, s).

Knot Floer homology categorifies the Alexander polynomial [OS04b, Equation (1)]

in the sense that the graded Euler characteristic of ĤFK (K) is ∆K(t):

∆K(t) =
∑
m,s

(−1)m dim ĤFKm(K, s) ts.

Moreover, knot Floer homology strengthens two key properties of the Alexander
polynomial. Let

∆K(t) = a0 +
∑
s>0

as(t
s + t−s)

denote the symmetrized Alexander polynomial. While the Alexander polynomial
gives a lower bound on the genus of K in the following manner:

g(K) ≥ max{s | as 6= 0},

knot Floer homology actually detects g(K) [OS04a]:

g(K) = max{s | ĤFK (K, s) 6= 0}.

Similarly, while the Alexander polynomial obstructs fiberedness in that

K fibered ⇒ ag(K) = ±1,

knot Floer homology actually detects fiberedness [Ghi08, Ni07]:

K is fibered ⇔ ĤFK (K, g(K)) = F.

3.2. The knot Floer complex. We now modify the constructions in Section 2 to
the case of doubly pointed Heegaard diagrams in order to define knot invariants.
As mentioned above, for simplicity, we restrict ourselves to knots in S3. (With mild
modifications, the constructions described here apply to any null-homologous knot
in a rational homology sphere.) Some of this material comes from [OS06b, Section
10]; see [OS04b] for more details and proofs. Many of our conventions and notations
come from [Zem17], see especially [Zem17, Section 1.5]. Knot Floer homology was
independently defined by Rasmussen in [Ras03].

We will work over the ring F[U, V ], where as before F = Z/2Z. We endow this ring
with a bigrading gr = (grU , grV ). We call grU the U -grading and grV the V -grading.
The variables U and V have grading

gr(U) = (−2, 0) and gr(V ) = (0,−2).
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It will often be convenient to consider the following linear combination of grU and
grV ,

A =
1

2
(grU − grV ),

called the Alexander grading. Note that A(U) = −1 and A(V ) = 1.
LetH be a doubly pointed Heegaard diagram for a knotK ⊂ S3. Let CFK F[U,V ](H)

be the free F[U, V ]-module generated by Tα∩Tβ. This module is relatively bigraded
as follows. Let φ ∈ π2(x,y) and define

grU (x)− grU (y) = µ(φ)− 2nw(φ)

grV (x)− grV (y) = µ(φ)− 2nz(φ).

By [OS04c, Proposition 7.5] (see also [Zem17, Section 5.1]), this relative grading is
well-defined. The relative gradings grU and grV can be lifted to absolute gradings,
using the absolute grading on HF−(S3); we describe this process below.

The differential ∂ : CFK F[U,V ](H)→ CFK F[U,V ](H) is defined to be

∂x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

#M̂(φ)Unw(φ)V nz(φ) y,

and is extended to all elements of CFK F[U,V ](H) by F[U, V ]-linearity. Note that the
differential preserves the Alexander grading.

Setting V = 1 and forgetting grV (that is, only considering the grading grU ),
we recover CF−(S3), whose homology is isomorphic to F[U ](0), where the subscript
(0) now denotes grU ; this determines the absolute U -grading. Note that setting
V = 1 corresponds to forgetting the z-basepoint. To determine the absolute V -
grading, we simply reverse the roles of U and V in the above construction. That
is, we set U = 1, forget grU , and only consider grV , recovering CF−(S3), whose
homology is isomorphic to F[V ] where grV (1) = 0. This corresponds to forgetting
the w-basepoint.

Theorem 3.1 ([OS04b, Theorem 3.1]). Let H be a doubly pointed Heegaard diagram
for a knot K ⊂ S3. The chain homotopy type of CFK F[U,V ](H) is an invariant of

K ⊂ S3.

Note that [OS04b, Theorem 3.1] is phrased in terms of filtered chain complexes;
see [Zem17, Section 1.5] for a description of the translation between filtered chain
complexes and modules over F[U, V ]. We will often abuse notation and write
CFK F[U,V ](K) rather than CFK F[U,V ](H).

Example 3.2. Figure 5 shows a doubly pointed Heegaard diagram for the left-handed
trefoil. We have

∂a = Ub

∂b = 0

∂c = V b.

Setting V = 1, we see that the homology, which is isomorphic to F[U ], is generated
by [a + Uc], implying that grU (a) = grU (Uc) = 0. Setting U = 1, we see that
the homology, which is isomorphic to F[V ], is generated by [c+ V a], implying that
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grV (c) = grV (V a) = 0. It follows that the generators a, b, c have the folllowing
gradings:

grU grV A
a 0 2 −1
b 1 1 0
c 2 0 1

Then H∗(CFK F[U,V ](−T2,3)) ∼= F[U, V ](0,0) ⊕ F(1,1), where the subscript denotes
gr = (grU , grV ) of 1. The F[U, V ] summand is generated by V a + Ub and the F
summand by b.

Exercise 3.3. Let H be a doubly pointed Heegaard diagram for K ⊂ S3.

(1) Show that

H∗(CFK F[U,V ](H)⊗F[V ] F[V, V −1], s) ∼= HF−(S3),

where the left-hand side denotes the part of the homology in Alexander
grading s, thought of as an F[W ]-module, where W = UV , and the right-
hand side is viewed as a module over F[W ], rather than F[U ]. (Hint:
Consider the map CF−(H) → (CFK F[U,V ](H) ⊗F[V ] F[V, V −1], s) given by

Unx 7→ UnV n+s−A(x)x.) Conclude that

H∗(CFK F[U,V ](H)⊗F[V ] F[V, V −1]) ∼= F[U, V, V −1].

(2) Repeat part (1) reversing the roles of U and V .

The knot Floer complex behaves nicely under connected sum, reversal, and mir-
roring. By [OS04b, Theorem 7.1], we have that

CFK F[U,V ](K1#K2) ' CFK F[U,V ](K1)⊗F[U,V ] CFK F[U,V ](K2).

Let Kr denote the reverse of K and mK the mirror. By [OS04b, Section 3], we have
that

(3.1) CFK F[U,V ](mK) ' CFK F[U,V ](K)∗,

where C∗ = HomF[U,V ](C,F[U, V ]) and

(3.2) CFK F[U,V ](K
r) ' CFK F[U,V ](K).

Exercise 3.4. Let H = (Σ,α,β, w, z) be a doubly pointed Heegaard diagram for K.
Show that H1 = (Σ,α,β, z, w) and H2 = (−Σ,β,α, w, z) are both diagrams for
Kr. Show that CFK F[U,V ](H) is isomorphic to CFK F[U,V ](H2) (cf. Exercise 2.13).
Conclude that Equation (3.2) holds.

Remark 3.5. It follows from Equation (3.2) and Exercise 3.4 that CFK F[U,V ](K) is
chain homotopy equivalent to complex C ′ obtained from CFK F[U,V ](K) by exchang-
ing the roles of U and V . (Note that one should then also exchange the roles of grU
and grV .)

Exercise 3.6. Compute CFK F[U,V ](T2,3) two ways: from a doubly pointed Heegaard
diagram and by applying Equation (3.1) to Example 3.2, and confirm that the two
answer agree.
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3.3. Algebraic variations. As usual, let H be a doubly pointed Heegaard diagram
for a knot K ⊂ S3. There are several algebraic modifications we may make to
CFK F[U,V ](H). Since the chain homotopy type of CFK F[U,V ](H) is an invariant of
the knot K, it follows that these algebraic modifications also yield knot invariants.

The first modification we consider is setting both U = 0 and V = 0, resulting in a
bigraded chain complex CFK F(H) over the field F. Setting U = V = 0 is equivalent
to requiring that nw(φ) = nz(φ) = 0 in the definition of the differential. We denote

the homology of CFK F(H) by ĤFK (K), which is a bigraded vector space.

It is common to use grU and A as the bigrading on ĤFK (K). (Of course, this is the

same information as grU and grV , since A = 1
2(grU − grV ).) We write ĤFKm(K, s)

to denote the summand of ĤFK (K) with grU = m and A = s. The grading grU is
often called the Maslov grading.

Example 3.7. Setting U = V = 0 in Example 3.2 results in

∂a = ∂b = ∂c = 0.

Thus, ĤFK (K) has dimension 3, generated by a, b, and c, with gradings given in
the table in Example 3.2. That is,

ĤFKm(K, s) =

{
F if (m, s) = (0,−1), (1, 0), or (2, 1)

0 otherwise.

Theorem 3.8 ([OS04b, Equation (1)]). The graded Euler characteristic of ĤFK (K)
is equal to the Alexander polynomial of K:

∆K(t) =
∑
m,s

(−1)m dim ĤFKm(K, s) ts.

Recall from [Kau83] (see also [OS06b, Theorem 11.3]) that the Alexander poly-
nomial of K can be computed in terms of the Kauffman states of a diagram for K.
Note that the Kauffman states of the left diagram in Figure 7 are in bijection with
the Heegaard Floer generators of the right diagram. This observation, together with
a computation of the bigradings, is at the heart of the proof of Theorem 3.8; see
[OS06b, Sections 11-13] for details.

Another algebraic modification is to set a single variable, say V , equal to zero,
resulting in a chain complex CFK F[U ] over the PID F[U ]. This corresponds to
requiring that nz(φ) = 0 in the definition of the differential. The homology of
CFK F[U ] is a F[U ]-module, denoted HFK−(K). As a finitely generated graded

module over a PID, HFK−(K) is isomorphic to a direct sum of free summands and
U -torsion summands as in Equation (2.1).

It is common to view HFK−(K) as bigraded by grU and A. The action of U
lowers grU by 2 and A by 1.

Exercise 3.9. Prove that H∗(CFK F[U ] ⊗F[U ] F[U,U−1]) ∼= ĤF (S3) ⊗F F[U,U−1] ∼=
F[U,U−1] and conclude that there is a unique free summand in HFK−(K).
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Example 3.10. Setting V = 0 in Example 3.2 results in the free F[U ]-module gener-
ated by a, b, and c with differential

∂a = Ub

∂b = 0

∂c = 0.

Hence

HFK−(K) ∼= F[U ](2) ⊕ F(1)

where [c] is a generator for the F[U ]-summand, [b] is a generator for the F-summand,
and the subscript denotes grU .

There are other algebraic modifications one may consider, such as setting Un = 0
or UV = 0; the latter modification will be of use in Section 4.

3.4. Computations. How does one compute CFK F[U,V ] in practice? For small
crossing knots, CFK F[U,V ] can be computed via grid diagrams [MOS09, MOST07];

see [BG12] for a table of ĤFK for knots up to 12 crossings computed using grid
diagrams. For an excellent textbook on the subject of grid diagrams, see [OSS15].
An invariant that is conjecturally equivalent to CFK F[U,V ]/(UV=0) can be algorith-
mically computed following [OS17]; such computations are significantly faster than
computations with grid diagrams. At the time of writing, a computer implementa-
tion of this algorithm is available at https://web.math.princeton.edu/~szabo/

HFKcalc.html.
For certain special families of knots, we can compute CFK F[U,V ] directly from the

definition (in the case of (1, 1)-knots) or from other easier to compute knot invariants
such as the Alexander polynomial and signature (in the case of alternating knots
and knots admitting L-space surgeries).

A knot in S3 that admits a genus 1 double pointed Heegaard diagram is called
a (1, 1)-knot. For a (1, 1)-knot K, the complex CFK F[U,V ](K) can be computed by

counting embedded disks in the universal cover of Σ = T 2, similar to Example 3.2;
see [GMM05].

If K is alternating (or more generally, quasi-alternating; see [OS05b, Definition

3.1]), then [OS03, Theorem 1.3] states that ĤFK (K) is completely determined by
the Alexander polynomial and signature of K. Moreover, [Pet13, Lemma 7], which

is completely algebraic, states that if K is alternating, then ĤFK (K) completely
determines the chain homotopy type of CFK F[U,V ](K).

Exercise 3.11. Let K be an alternating knot. A key ingredient in the proof of [OS03,

Theorem 1.3] is that if ĤFKm(K, s) 6= 0, then m = s + σ(K)
2 , where σ(K) denotes

the signature of K. (If ĤFK (K) is supported on a single diagonal with respect to
the Maslov and Alexander gradings, we say K is homologically thin.) Show that this
fact combined with Theorem 3.8 completely determines the bigraded vector space

ĤFK (K) when K is an alternating knot.

If K admits a lens space surgery (or more generally, an L-space surgery), it
follows from [OS05a, Theorem 1.2] that CFK F[U,V ](K) is completely determined by

https://web.math.princeton.edu/~szabo/HFKcalc.html
https://web.math.princeton.edu/~szabo/HFKcalc.html
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the Alexander polynomial of K, as follows. If K admits an L-space surgery, then
the non-zero coefficients in ∆K(t) are all ±1 and they alternate in sign. Let

∆K(t) =
n∑
i=0

(−1)itai ,

for some decreasing sequence (ai) and even n. Let bi = ai − ai−1. If K admits a
positive L-space surgery, then CFK F[U,V ](K) is generated by x0, . . . , xn where for i
odd,

∂xi = U bixi−1 + V bi+1xi+1,

and for i even, ∂xi = 0. The absolute grading is determined by grU (x0) = 0
and grV (xn) = 0. (There is no loss of generality in considering only positive L-
space surgeries. Indeed, if K admits a negative L-space surgery, then mK admits a
positive L-space surgery and one can apply Equation (3.1).)

Exercise 3.12. Suppose K admits a positive L-space surgery. Express ĤFK (K) in

terms of ∆K(t), and verify that ĤFK (K) satisfies Theorem 3.8.

(For the relationship between (1, 1)-knots and L-space knots, see [GLV18].)

4. Heegaard Floer homology of knot surgery

In this section, we discuss the relationship between the knot Floer complex
CFK F[U,V ](K) and HF−(S3

n(K)), where S3
n(K) denotes n-surgery on K ⊂ S3.

We begin with some observations about CFK F[U,V ](K), which is a chain complex
over F[U, V ]. Let W = UV . Note that multiplication by W preserves the Alexander
grading. Hence as an F[W ]-module, the complex CFK F[U,V ](K) splits as a direct
sum over the Alexander grading. (However, note that neither multiplication by U
nor by V respects this splitting.)

Following [OS04b, Section 4], one may identify spinc-structures on S3
n(K) with

Z/nZ. We have that HF−(S3
n(K)) is a module over a polynomial ring in a single

variable; we denote this variable by W (rather than U , as in Section 2).

Theorem 4.1 ([OS04b, Theorem 4.4], cf. [Ras03, Section 4]). Let n ≥ 2g(K) − 1
and |s| ≤ bn2 c. Then

HF−(S3
n(K), [s]) ∼= H∗(CFK F[U,V ](K, s))

as relatively Z-graded F[W ]-modules. That is, on the left-hand side, W = U while
on the right-hand side, W = UV . The relative grading on the right-hand side may
be taken to be either grU or grV .

Remark 4.2. See [OS04b, Corollary 4.2] for the absolutely graded version of Theorem
4.1.

Example 4.3. Let Y = S3
+1(−T2,3). (It follows from [Mos71, Proposition 3.1] that

S3
+1(−T2,3) ∼= −Σ(2, 3, 7).) We will use Theorem 4.1 to compute HF−(Y ). Since Y

is an integer homology sphere, there is a unique spinc-structure on Y . From Example
3.2, we have that CFK F[U,V ](−T2,3, 0) is generated over F[W ], where W = UV , by

V a, b, Uc.
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The differential is given by

∂(V a) = W · b
∂b = 0

∂(Uc) = W · b.

Note that the elements V a and Uc are in the same relative grading, while the relative
grading of b is one greater than the relative grading of V a. We have that

HF−(Y ) ∼= H∗(CFK F[U,V ](−T2,3, 0)) ∼= F[W ](0) ⊕ F(1),

where the F[W ]-summand is generated by V a+Uc and the F-summand is generated
by b. (The absolute gradings are computed following [OS04b, Corollary 4.2].)

Example 4.4. Let Y = S3
+3(−T2,3). By Theorem 4.1,

HF−(Y, [s]) ∼= H∗(CFK F[U,V ](−T2,3, s)

for s = −1, 0, 1. By Example 4.3, we have

HF−(Y, [0]) ∼= H∗(CFK F[U,V ](−T2,3, 0)) ∼= F[W ]⊕ F.

From Example 3.2, we have that CFK F[U,V ](−T2,3,−1) is generated over F[W ] by

a, Ub, U2c.

The differential is given by

∂a = Ub

∂(Ub) = 0

∂(U2c) = W · Ub.

Hence H∗(CFK F[U,V ](−T2,3,−1)) ∼= F[W ], generated by U2c + Wa. Similarly,

H∗(CFK F[U,V ](−T2,3, 1)) ∼= F[W ], generated by V 2a + Wc; we leave this calcula-
tion to the reader.

The proof of Theorem 4.1 relies on relating the Heegaard diagrams for (S3,K) and
S3
n(K); see, for example, Figures 7 and 8. The rough idea is that for each generator

of the Heegaard diagram for (S3,K) and for each spinc-structure on S3
n(K), there is

a canonical “nearest” generator obtained by replacing the intersection point on the
meridian with a nearby intersection point on the n-framed longitude. The remainder
of the proof relies on the relationship between spinc-structures and the Alexander
grading, as well as a count of holomorphic triangles in a Heegaard triple.

Note that Theorem 4.1 requires that surgery coefficient n to be greater than or
equal to 2g(K) − 1. In [OS08, Theorem 1.1], Ozsváth-Szabó provide a recipe for
computing the Heegaard Floer homology of any integer surgery along K ⊂ S3; they
improve this to a formula for rational surgery in [OS11].

In these notes, we will work with the minus flavor, as in [MO10, Theorem 1.1].
One disadvantage to working with the minus flavor is that one must work with
completed coefficients (cf. Remark 2.5), that is, we work over the power series rings
F[[U ]] and F[[U, V ]]. To this end, for a pointed Heegaard diagram H for Y , let

CF−(H) = CF−(H)⊗F[U ] F[[U ]]
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and let HF−(Y ) = H∗(CF−(H)). Note that since F[[U ]] is flat over F[U ], we have
that HF−(Y ) ∼= HF−(Y )⊗F[U ] F[[U ]]. Similarly, let

CFK(K) = CFK F[U,V ](K)⊗F[U,V ] F[[U, V ]].

We again write CFK(K, s) to denote the part of CFK(K) in Alexander grading
s. (Note that this is not quite a grading in the usual sense, as CFK(K) is a direct
product rather than direct sum of its homogenously graded pieces. We will abuse
notation and still refer to s as the Alexander grading, and similarly for grU and
grV .)

By Remark 3.5, we have that CFK(K)⊗F[V ] F[V, V −1] is chain homotopy equiv-

alent to CFK(K) ⊗F[U ] F[U,U−1] after exchanging the roles of U and V . (Note
that this chain homotopy equivalence reverses the Alexander grading.) Moreover,
in any fixed Alexander grading, both are homotopy equivalent to CF−(H) (cf. Ex-
ercise 3.3), and so let φ denote this Alexander grading-preserving chain homotopy
equivalence of the F[UV ]-modules.

Let v : CFK(K)→ CFK(K)⊗F[V ]F[V, V −1] denote inclusion. Let h : CFK(K)→
CFK(K)⊗F[V ] F[V, V −1] denote the composition

CFK(K) −→ CFK(K)⊗F[U ] F[U,U−1]
φ−→ CFK(K)⊗F[V ] F[V, V −1],

where the first map is inclusion. Moreover, since multiplication by V is invertible
in CFK(K)⊗F[V ] F[V, V −1], we have that

V n : CFK(K)⊗F[V ] F[V, V −1]→ CFK(K)⊗F[V ] F[V, V −1]

is a (relatively graded) isomorphism.
Consider

Dn : CFK(K)→ CFK(K)⊗F[V ] F[V, V −1]

where Dn = v + V nh.
Recall that given two chain complexes (X, ∂X), (Y, ∂Y ) and a chain map f : X →

Y , the mapping cone of f is the chain complex Cone(f) = X⊕Y with the differential
∂(x, y) = (∂Xx, f(x) + ∂Y y).

Theorem 4.5 ([MO10, Theorem 1.1], cf. [OS08, Theorem 1.1]). We have the
following isomorphism of F[W ]-modules

HF−(S3
n(K)) ∼= H∗(Cone(Dn)),

where on the left-hand side W = U and on the right-hand side, W = UV .

References

[BG12] John A. Baldwin and William D. Gillam, Computations of Heegaard-Floer knot homol-
ogy, J. Knot Theory Ramifications 21 (2012), no. 8, 1250075, 65.

[Ghi08] Paolo Ghiggini, Knot Floer homology detects genus-one fibred knots, Amer. J. Math.
130 (2008), no. 5, 1151–1169.

[GLV18] Joshua Evan Greene, Sam Lewallen, and Faramarz Vafaee, (1, 1) L-space knots, Compos.
Math. 154 (2018), no. 5, 918–933.

[GMM05] Hiroshi Goda, Hiroshi Matsuda, and Takayuki Morifuji, Knot Floer homology of (1, 1)-
knots, Geom. Dedicata 112 (2005), 197–214.

[Kau83] Louis H. Kauffman, Formal knot theory, Mathematical Notes, vol. 30, Princeton Uni-
versity Press, Princeton, NJ, 1983.



HEEGAARD FLOER HOMOLOGY 21
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[MOS09] Ciprian Manolescu, Peter Ozsváth, and Sucharit Sarkar, A combinatorial description of
knot Floer homology, Ann. of Math. (2) 169 (2009), no. 2, 633–660.
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