This is an announcement for the paper “Isometric representation of Lipschitz-free spaces over convex domains in finite-dimensional spaces” by Marek Cúthhttps://arxiv.org/find/math/1/au:+Cuth_M/0/1/0/all/0/1, Ondřej F.K. Kalendahttps://arxiv.org/find/math/1/au:+Kalenda_O/0/1/0/all/0/1, Petr Kaplickýhttps://arxiv.org/find/math/1/au:+Kaplicky_P/0/1/0/all/0/1.
Abstract: Let $E$ be a finite-dimensional normed space and $\Omega$ a nonempty convex open set in $E$. We show that the Lipschitz-free space of $\Omega$ is canonically isometric to the quotient of $L_1(\Omega, E)$ by the subspace consisting of vector fields with zero divergence in the sense of distributions on $E$.
The paper may be downloaded from the archive by web browser from URL https://arxiv.org/abs/1610.03966