This is an announcement for the paper "Closed ideals in $\mathcal{L}(X)$ and $\mathcal{L}(X^*)$ when $X$ contains certain copies of $\ell_p$ and $c_0$" by Ben Wallis.
Abstract: Suppose $X$ is a real or complexified Banach space containing a complemented copy of $\ell_p$, $p\in(1,2)$, and a copy (not necessarily complemented) of either $\ell_q$, $q\in(p,\infty)$, or $c_0$. Then $\mathcal{L}(X)$ and $\mathcal{L}(X^*)$ each admit continuum many closed ideals. If in addition $q\geq p'$, $\frac{1}{p}+\frac{1}{p'}=1$, then the closed ideals of $\mathcal{L}(X)$ and $\mathcal{L}(X^*)$ each fail to be linearly ordered. We obtain additional results in the special cases of $\mathcal{L}(\ell_1\oplus\ell_q)$ and $\mathcal{L}(\ell_p\oplus c_0)$, $1<p<2<q<\infty$.
Archive classification: math.FA
Mathematics Subject Classification: 46B20
Remarks: 28 pages
Submitted from: wallis@math.niu.edu
The paper may be downloaded from the archive by web browser from URL
http://front.math.ucdavis.edu/1507.03241
or