This is an announcement for the paper "Generalized-Lush Spaces and the Mazur-Ulam Property" by Dongni Tan, Xujian Huang, and Rui Liu.
Abstract: We introduce a new class of Banach spaces, called generalized-lush spaces (GL-spaces for short), which contains almost-CL-spaces, separable lush spaces (specially, separable $C$-rich subspaces of $C(K)$), and even the two-dimensional space with hexagonal norm. We obtain that the space $C(K,E)$ of the vector-valued continuous functions is a GL-space whenever $E$ is, and show that the GL-space is stable under $c_0$-, $l_1$- and $l_\infty$-sums. As an application, we prove that the Mazur-Ulam property holds for a larger class of Banach spaces, called local-GL-spaces, including all lush spaces and GL-spaces. Furthermore, we generalize the stability properties of GL-spaces to local-GL-spaces. From this, we can obtain many examples of Banach spaces having the Mazur-Ulam property.
Archive classification: math.FA
Mathematics Subject Classification: Primary 46B04, Secondary 46B20, 46A22
Remarks: 16 pages
Submitted from: ruiliu@nankai.edu.cn
The paper may be downloaded from the archive by web browser from URL
http://front.math.ucdavis.edu/1210.7324
or