This is an announcement for the paper "A remark on spaces of affine continuous functions on a simplex" by Emanuele Casini, Enrico Miglierina, and Lukasz Piasecki.
Abstract: We present an example of an infinite dimensional separable space of affine continuous functions on a Choquet simplex that does not contain a subspace linearly isometric to $c$. This example disproves a result stated in M. Zippin. On some subspaces of Banach spaces whose duals are $L_1$ spaces. Proc. Amer. Math. Soc. 23, (1969), 378-385.
Archive classification: math.FA
Mathematics Subject Classification: Primary 46B04, Secondary 46B45, 46B25
Submitted from: enrico.miglierina@unicatt.it
The paper may be downloaded from the archive by web browser from URL
http://front.math.ucdavis.edu/1503.09088
or