Abstract of a paper by Jan Rozendaal, Fedor Sukochev and Anna Tomskova
This is an announcement for the paper "Operator Lipschitz functions on Banach spaces" by Jan Rozendaal, Fedor Sukochev and Anna Tomskova. Abstract: Let $X$, $Y$ be Banach spaces and let $\mathcal{L}(X,Y)$ be the space of bounded linear operators from $X$ to $Y$. We develop the theory of double operator integrals on $\mathcal{L}(X,Y)$ and apply this theory to obtain commutator estimates of the form \begin{align*} \|f(B)S-Sf(A)\|_{\mathcal{L}(X,Y)}\leq \textrm{const} \|BS-SA\|_{\mathcal{L}(X,Y)} \end{align*} for a large class of functions $f$, where $A\in\mathcal{L}(X)$, $B\in \mathcal{L}(Y)$ are scalar type operators and $S\in \mathcal{L}(X,Y)$. In particular, we establish this estimate for $f(t):=|t|$ and for diagonalizable operators on $X=\ell_{p}$ and $Y=\ell_{q}$, for $p<q$ and $p=q=1$, and for $X=Y=\mathrm{c}_{0}$. We also obtain results for $p\geq q$. We study the estimate above in the setting of Banach ideals in $\mathcal{L}(X,Y)$. The commutator estimates we derive hold for diagonalizable matrices with a constant independent of the size of the matrix. Archive classification: math.FA math.OA Mathematics Subject Classification: Primary 47A55, 47A56, secondary 47B47 Remarks: 30 pages Submitted from: janrozendaalmath@gmail.com The paper may be downloaded from the archive by web browser from URL http://front.math.ucdavis.edu/1501.03267 or http://arXiv.org/abs/1501.03267
participants (1)
-
alspach@math.okstate.edu