This is an announcement for the paper “The effect of perturbations of linear operators on their polar decomposition” by Richard Duong and Friedrich Philipp.
Abstract: The effect of matrix perturbations on the polar decomposition has been studied by several authors and various results are known. However, for operators between infinite-dimensional spaces the problem has not been considered so far. Here, we prove in particular that the partial isometry in the polar decomposition of an operator is stable under perturbations, given that kernel and range of original and perturbed operator satisfy a certain condition. In the matrix case, this condition is weaker than the usually imposed equal-rank condition. It includes the case of semi-Fredholm operators with agreeing nullities and deficiencies, respectively. In addition, we prove a similar perturbation result where the ranges or the kernels of the two operators are assumed to be sufficiently close to each other in the gap metric.
The paper may be downloaded from the archive by web browser from URL http://arxiv.org/abs/1602.05304