This is an announcement for the paper "Uniqueness of the maximal ideal of operators on the $\ell_p$-sum of $\ell_\infty^n\ (n\in\mathbb{N})$ for $1<p<\infty$" by Tomasz Kania and Niels Jakob Laustsen.
Abstract: A recent result of Leung (Proceedings of the American Mathematical Society, to appear) states that the Banach algebra $\mathscr{B}(X)$ of bounded, linear operators on the Banach space $X=\bigl(\bigoplus_{n\in\mathbb{N}}\ell_\infty^n\bigr)_{\ell_1}$ contains a unique maximal ideal. We show that the same conclusion holds true for the Banach spaces $X=\bigl(\bigoplus_{n\in\mathbb{N}}\ell_\infty^n\bigr)_{\ell_p}$ and $X=\bigl(\bigoplus_{n\in\mathbb{N}}\ell_1^n\bigr)_{\ell_p}$ whenever $p\in(1,\infty)$.
Archive classification: math.FA
Submitted from: t.kania@lancaster.ac.uk
The paper may be downloaded from the archive by web browser from URL
http://front.math.ucdavis.edu/1405.5715
or